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Abstract Ultra-light dark matter is a class of dark matter models (DM) where DM is composed by bosons
with masses ranging from 10−24 eV < m < eV. These models have been receiving a lot of attention in the
past few years given their interesting property of forming a Bose–Einstein condensate (BEC) or a superfluid on
galactic scales. BEC and superfluidity are some of the most striking quantum mechanical phenomena manifest
on macroscopic scales, and upon condensation the particles behave as a single coherent state, described by the
wavefunction of the condensate. The idea is that condensation takes place inside galaxies while outside, on
large scales, it recovers the successes of ΛCDM. This wave nature of DM on galactic scales that arise upon
condensation can address some of the curiosities of the behaviour of DM on small scales. There are many
models in the literature that describe a DM component that condenses in galaxies. In this review, we are going
to describe those models, and classify them into three classes, according to the different non-linear evolution and
structures they form in galaxies: the fuzzy dark matter (FDM), the self-interacting fuzzy dark matter (SIFDM),
and the DM superfluid. Each of these classes comprise many models that present the same phenomenology in
galaxies. They also include some microscopic models like the axions and axion-like particles. To understand and
describe this phenomenology in galaxies, we are going to review the phenomena of BEC and superfluidity that
arise in condensed matter physics, and apply this knowledge to DM. We describe how ULDM can potentially
reconcile the cold DM picture with the small scale behaviour. These models present a rich phenomenology that
is manifest in different astrophysical consequences. We review here the astrophysical and cosmological tests
used to constrain those models, together with new and future observations that promise to test these models in
different regimes. For the case of the FDM class, the mass where this model has an interesting phenomenology
on small scales ∼ 10−22 eV, is strongly challenged by current observations. The parameter space for the other
two classes remains weakly constrained. We finalize by showing some predictions that are a consequence of the
wave nature of this component, like the creation of vortices and interference patterns, that could represent a
smoking gun in the search of these rich and interesting alternative class of DM models.

Keywords Ultra-light dark matter · Fuzzy dark matter · Superfluid dark matter · Bose–Einstein condensate ·
Superfluid
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1 Introduction and motivation

An overwhelming amount of observational data provides clear and compelling evidence for the presence of dark
matter (DM) on a wide range of scales. This component, which is believed to be responsible for the “missing”
mass in our universe, is the main ingredient for all the structures we have in our universe. This is one of the
oldest unsolved problems in cosmology, being traced back to the 1930s (Zwicky 1933; Bertone and Hooper
2018), and also one of the best measured ones. The evidence for dark matter first emerged from the study of
the rotation curves of galaxies. From pioneering studies (Rubin and Ford 1970), it was already evident that
the amount of matter necessary to fit the flat observed rotation curves did not match the theoretical curves
predicted, assuming Newtonian mechanics and taking into account only the visible matter present in those
galaxies. Dark matter was proposed as an additional (non-luminous) component to explain this discrepancy.

Nowadays, the evidence for dark matter comes from precise measurements on a wide range of scales. From
sub-galactic and galactic scales, to clusters, going up to the large scale structure (LSS). On cosmological scales,
the observed anisotropies of the Cosmic Microwave Background (CMB) (Ade et al. 2018), together with data
from Type Ia Supernovae, determine the total energy density of matter with high precision. This together with
the bounds on the abundance of the light chemical elements from Big Bang Nucleosynthesis, which constrains
the amount of baryonic matter in the universe, strongly shows the need for a clustering component of non-
baryonic1 origin, that does not interact (strongly) with photons, and that dominates the matter content of the
universe, accounting for approximately 85% of all matter. The same non-luminous and clustering component is
necessary to explain the structures we see in our universe today, as is evident in observations of the large scale
structure of our universe (Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have
converged to a phenomenological model to describe our universe, the ΛCDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described
by only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is
flat and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately
5% of the energy density of the universe, a small radiation component, but in its majority is composed of two

1 We are going to see later that there are some “baryonic” candidates for DM.
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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of
magnitude in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

unknown ingredients. The energy budget of the universe is dominated (∼ 70%) by a component responsible
for the current accelerated expansion of the universe called dark energy, and a clustering component, the dark
matter, making up to ∼ 25% of our universe. These large-scale observations give a coarse-grained description
of these non-baryonic components in the hydrodynamical limit where dark matter is described as a perfect
fluid with very small pressure (w ≈ 0) and sound speed, cs ≈ 0, that does not interact, at least strongly, with
baryonic matter. Dark energy is parametrized by a cosmological constant, the simplest model for the present
accelerated expansion of our universe.

Therefore, within ΛCDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, sufficiently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational
data on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear,
large scales observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision,
the microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible
models of DM. Those models recover the large scale properties of CDM, but invoke very different objects and
phenomena to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover,
as shown in Fig. 1. This figure shows many different broad classes of DM models, and each of which might
contain many different specific models. It spans more than 80 orders of magnitude and shows very different
hypothesis for DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up
to astrophysical size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel
2020)). This shows us that although we have gathered a lot of knowledge about the gravitational properties of
DM, the nature of DM is still elusive, with the current data still allowing a huge amount of highly different
models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that
became the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which
represent new elementary particles that interact with baryons not only gravitationally but also through the weak
force or a new force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this
candidate is because if it is thermally produced in the early universe, the relic abundance of particles that have
mass of the order of the electroweak scale, and a coupling of order one, corresponds precisely to the abundance
of DM in our universe. The possibility that WIMP could also be discovered by direct detection experiments
is also an important motivation to search for this candidate. There is a great experimental effort to constrain
the properties of WIMP DM with the parameter space being very restricted over the past few years. Given
the complex phenomenology from the possible models of WIMP DM and their interaction with the standard
model particles, the translation of those bounds to the exclusion of WIMP models is not straightforward. The
cosmological and astrophysical behaviour of all the classes of WIMP models is similar to CDM, so the avenue to
probe this scenario is through direct, indirect and collider experiments (for a complete review of all the searches,
current and projected limits on WIMP detection for both spin dependent and independent models, together
with indirect detection and collider searches, see (Arcadi et al. 2018).)

Another candidate that comes from extensions of the standard model of particle physics is the QCD axion.
The axion was introduced to address the strong CP problem of quantum chromodynamics (QCD) (Peccei and
Quinn 1977; Weinberg 1978; Wilczek 1978). The axion can be used in many different contexts in cosmology,
including as a candidate for DM. The QCD non-perturbative effects induce a potential for the axion. During
the radiation dominated period, the QCD axion starts to oscillate at the bottom of its potential and the axions
behaves like dust, contributing to the energy density of the universe as non-relativistic matter. The QCD axion
couples weakly to the standard model, which motivated an experimental effort for its direct detection (see these
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references for a review of axion direct detection searches (Di Luzio et al. 2020; Sikivie 2020; Graham et al.
2015a; Battesti et al. 2008)).

Although we have these very well motivated candidates from particle physics, we still have no conclusive
evidence for electroweak or other non-gravitational interactions for dark matter. All the knowledge we have
about dark matter is gravitational. We know that CDM describes the behaviour of DM very well on large
scales. However, this beautiful and simple coarse grained description of DM as the CDM is challenged by some
curiosities that appear on small scales.

As the observations and simulations of the small non-linear scales and galactic scales improve, a number of
challenges have emerged for this coarse grained description from ΛCDM. These discrepancies have been around
for decades, such as the cusp-core problem, the missing satellite problem and the too big to fail problem. A
particularly curious challenge is the regularity/diversity of rotation curves. One thing that is surprising about
galaxies is that they are extremely diverse, but at the same time they are incredibly regular. This fact is manifest
in several empirical scaling relations, such as the well known Baryonic Tully–Fisher relation (BTFR; (McGaugh
2005, 2008)). The BTFR shows the correlation between the total baryon mass (including stars and gas) of the
galaxy with the the asymptotic rotation velocity in galaxies. The measured BTFR follows a scaling relation
different from the one predicted by ΛCDM, and it holds for a range of 6 orders of magnitude in mass, with very
small scatter. The significance of these discrepancies is disputed and addressing these challenges is an active
field of research. Those challenges emerge on scales where baryonic physics is relevant and simulations including
several baryonic effects have been perfected pointing in the direction that baryons could possibly explain some
of these observations within ΛCDM.

As the physics of these baryonic processes is complex and as there is no final consensus about the status of
theses discrepancies, an alternative explanation for these discrepancies on small scales could be that DM is not
the usual CDM, but a component that has different phenomenology on small scales. Even setting aside the small
scale problems, given that the observational constraints on these scales are less strong than on cosmological
scales, the dynamics on small scales can offer a chance to probe the properties of DM in the hope to help find
the microphysics of this component. Therefore, the small scales are a good laboratory to probe the nature of
DM models that have impacts on astrophysical scales.

The simplest modifications of the DM paradigm that have a different phenomenology on small scales, and can
potentially address some of the small scales discrepancies is the warm dark matter (WDM) model (Colin et al.
2000)). In this model, DM has a small mass leading to a thermal velocity dispersion, modifying its behaviour
on astrophysical scales while maintaining the large scale predictions of CDM. Even with a small velocity, DM
free streams out of potential wells and is enough to suppress the formation of small scale structures addressing
some of the small scale problems. Another popular model inspired by those discrepancies is the self interacting
DM (SIDM) (Spergel and Steinhardt 2000)), where the DM particles have a self-interaction in a way to also
suppress the formation of structures on small scales.

In the past few years, another class of alternative models has (re)emerged as an appealing class of DM models
given their rich phenomenolgy on small scales. These are the ultra-light dark matter models (ULDM), where
DM is composed by ultra-light bosons with masses in the range 10−24 eV < m < eV. Given the small masses
of these bosons, DM forms a condensate or a superfluid on galactic scales. The idea is that the wave nature of
DM on galactic scales provides a non-CDM behavior which leads to a different and rich phenomenology for DM
on those scales. On large scales DM behaves as CDM, although with different initial conditions for the ULDM
in comparison to CDM, maintaining the observable successes of CDM on those scales.

There are many different realizations of this interesting non-CDM phenomenology on small scales. Depending
on the modelling of the ULDM, these produce distinct condensate structures and lead to a different phenomenol-
ogy. There are many different models in the literature describing these possibilities. We classify them in this
review into three categories, according to the different condensate structure they form. These three classes are
the fuzzy dark matter, when the ultra-light scalar field system is only subjected to gravity; the self-interacting
Fuzzy DM when the system also presents (weakly) self-interaction, and superfluid DM, where DM forms a
superfluid on galactic scales.

This classification is general and based only on the non-linear structure it forms in the halo of galaxies, which
is a consequence of the non-relativistic theory they describe. These can be purely phenomenological models
of ULDM on small scales, in the absence of a microscopic description. These classes also contain microscopic
scalar field theories like QCD axion, axions (cominig from other origins) or axion like particles (ALP), which are
part of the FDM class. Each of these categories have different properties which lead to different astrophysical
consequences, that can be probed by current and future astrophysical observations. For this reason, ULDM
models have regained interest in the community in the past few years, with new and exciting experimental
effort to probe many aspects of the small astrophysical scales, opening the avenue to test these models and
answer some questions about the nature of DM.
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Motivation for this review and detailed plan: This review has the goal of giving an overview of the
ultra-light dark matter (ULDM) candidates, focusing in their gravitational effects and mostly in their different
phenomenology on small scales.

There are many very good and complete reviews in the literature describing specific models of ULDM
or the microscopic models that can be part of the ULDM class like. There are many reviews of axions in
cosmology (Sikivie 2008; Arvanitaki et al. 2010; Wantz and Shellard 2010; Kim and Carosi 2010; Kawasaki
and Nakayama 2013; Marsh 2016) and ALPs (Ringwald 2014; Arias et al. 2012; Graham et al. 2015b; Marsh
2018; Niemeyer 2019; Powell 2016). Axions and ALPs have a whole rich phenomenology of its interactions to
the standard model that will not be explored here, but that can be seen in the following reviews (Marsh 2016;
Graham et al. 2015b). The FDM model oalso has a huge body of literature with many excellent reviews like (Hui
et al. 2017; Suárez et al. 2014; Ureña-López 2019).

We propose to do something different in this review. Instead of studying one single model or a specific
microsocpic theory, we study many ULDM models interested in the gravitational phenomenology that these
models present. We study the ULDM models by dividing them into classes according to their dynamics on small
scales. The three classes proposed in this review encompass many of the models cited above, with the inclusion
of (weakly) self-interacting models and the DM superfluid model. We believe this classification is instrumental
and shows the general behaviour and phenomenology that each of these model have inside each class. Therefore,
we hope to bring not only a new classification that encompasses many of the models present in the literature,
but also to include new models, trying to make a big overview of the entire class of ULDM models.

Another new feature this review brings is a brief review of BEC and superfluidity, and the different de-
scriptions of these phenomena. Condensation in each of these classes might arise in a different way, given their
different descriptions. Bose Einstein condensation and superfluidity are very well understood and well studied
macroscopic quantum phenomena in condensed matter physics, being largely studied theoretically and exper-
imentally. However, these phenomena are not so well understood in gravity. Therefore, understanding their
definition, description and differences is particularly important in order to understand if condensation arises in
theses models, and the difference in the condensate structure that is expected to form in each of the classes of
ULDM models.

I take this opportunity to also discuss briefly the different views in the literature about the formation of a
condensate and the scales where this effect takes place.

With that, we aim to give a general picture of the state of the field to date, trying to describe all the classes
of ULDM present in the literature. We hope this review can be a resource to researcher entering this exciting
field.

The review is organized as follows. First, in Sect. 2, we start by describing the small scale challenges of
ΛCDM, as a motivation to show the discrepancies these alternative models of DM aim to address. The goal of
this section is not only to show the problems that some of the ULDM models might solve, but also to introduce
the reader into some of the concepts of galactic astrophysics. In this way, the reader can understand some of
the interesting phenomenology that the ULDM models have on small scales that differ from the ones predicted
by the CDM paradigm. Next, in Sect. 3, we introduce the basic concepts of the quantum phenomena of BEC
and superfluids. In this section we describe these phenomena, describe approximations and and the structures
formed in those system with and without rotation, all in the context of condensed matter physics where they
are well defined, understood and tested. The goal is to give a sound basis to the reader so they can understand
with a critical view how these concepts can be applied to the case of DM in the next section, given the analogies,
approximations and generalizations done in the literature of ULDM. Following this we are ready to describe the
main topic of the review, the ULDM models in Sect. 4. We start by describing the three classes that we propose
to classify the models of ULDM based on the type of non-linear they describe. We then talk about the fuzzy
DM and the self-interacting BEC DM models, showing the conditions for them to condense on galactic scales.
We then focus on the fuzzy DM model, showing how and in which conditions the model attempts to solve the
small scale challenges, and the interesting astrophysical consequences this class presents. We then talk about
the superfluid DM model describing its condensation on galactic scales, the formation of the superfluid core
and its observational consequences. We also discuss the stability of this construction, and its possible extension
to cosmology. The constraints in these models and new windows of observations of the effects of these models
are discussed in Section 5. We will constraints from different observations. In the case of the FDM the current
bounds show that the mass range where an interesting phenomenology is expected on small scales is strongly
constrained. We conclude the review summarizing our discussion.

Since there is no unique literature this review is based on, but a series of reviews and articles referring to
specific topics, the main references used are cited in the corresponding sections. The only exception is Section
2 that is based mainly in the following reviews (Bullock and Boylan-Kolchin 2017; Del Popolo and Le Delliou
2017; Famaey and McGaugh 2012).
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Conventions: In the entire review natural units are used, where c = ~ = 1, unless stated otherwise. The
exception is section 3 where all the ~ factors are present. With that, the reduced Planck mass is given by
M2

pl = 1/8πG, where G is the Newtonian gravitational constant. Unless stated otherwise, the metric signature
used is (+,−,−,−), and Greek letters are indices going from µ, ν = 0, . . . , 3. Sometimes for simplicity we describe
partial derivatives as ∂µ = ∂/∂xµ. In the text gray boxes bring definitions necessary for the understanding of the
topics in the section or following sections. Frames text and equations refer to important results or discussions
that we would like to highlight.

2 Small-scale challenges of cold dark matter

In the concordance model of cosmology, DM is described by the CDM paradigm. This hydrodynamical de-
scription for DM is in very good agreement with observations from large scales. This can be seen in the power
spectrum (P (k)), which is the Fourier transform of the two-point correlation function of the matter density
perturbations,

∆2(k) =
1

2π2
k3 P (k) , (1)

represented here by the dimensionless power spectrum where k is the wavenumber of the fluctuation, shown
in Fig. 2. The large scales (around k . 0.1 Mpc−1), measured by the CMB and LSS galaxy surveys, show a
good compatibility with the CDM model. This agreement is also robust for the non-linear intermediary scales
(k ∼ [10−1 − 10] Mpc−1) with constrains from clusters, weak lensing and Ly-α forest. As we go to smaller and
highly non-linear scales (k & 10Mpc−1 equivalent to M . 1010M�), these constraints are less strong, and might
retain important information about possible deviations from the CDM paradigm. We can see on the right side of
Fig. 2 on galatic and subgalatic scales, different models of DM would behave very differently from the expected
linear behaviour of CDM and this could be probed by the observations on those scales (Zavala and Frenk 2019;
Kuhlen et al. 2012).

Fig. 2 In this figure, inspired from (Kuhlen et al. 2012), we show how the dimensionless power spectrum can be probed by many
large scale and small scale observables, which can be seen as a function of the wavenumber k. The solid line shows the linear
dimensionless power spectrum coming from a ΛCDM universe. To show how the small scales might reveal different behaviour
for different DM components, we show the linear power spectrum of warm DM (WDM) with mass of 10 keV (red dotted line),
WDM with mass of 4 keV (green dashed line), and for fuzzy DM with mass 10−22 eV (orange dash-dotted line). The gray dotted
horizontal line represents the limit from linear to non-linear regime, where ∆ ∼ 1. The power spectrum for ΛCDM and for WDM
were generated using the Boltzmann code CLASS (Lesgourgues 2011; Lesgourgues and Tram 2011), and for the fuzzy DM using
AxionCAMB (Lewis et al. 2000; Hlozek et al. 2015)3.

On small scales, the formation of structures is highly non-linear and the evolution of structures is studied
using large numerical simulations. In the past few years, those simulations improved in size and precision,

3 The parameters used to generate these power spectra were: Ωbh
2 = 0.022, Ωch2 = 0.12, h = 0.67, ns = 0.96, As = 2.2× 10−9,

and τ = 0.09.
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simulating the cosmological and small scales. But when compared to the observations of galaxies, a number
of discrepancies emerged, revealing some curious behaviour on small scales. Given the enormous success of the
concordance model, these discrepancies attract a lot of interest of the community. They might represent that
we need to better take into account the astrophysical processes that happen inside those regions, which indeed
have a complex dynamics. Or this might indicate that the CDM model is not good to describe the physics on
small scales and the coarse grained CDM paradigm needs to be revised. An even a more radical approach would
be to modify gravity on smaller scales.

In this section we present very concisely the theory of non-linear structure evolution. We show how the
numerical predictions assuming the concordance model might be in tension with the current observations of
galaxies. These tensions are seen in the counts and density of low-mass objects, and in the scaling relations that
show the tight regularity that galaxies present. We highlight in this section some of the concepts that are going
to be used in the ULDM section and that might not be too familiar for researchers from fields of dark matter
phenomenology and cosmology.

Summary of scales and galaxies4

Galaxy clusters: Largest gravitationally bound systems in the universe, with masses ∼ 1014 − 1015M�
(equivalent to k ∼ [1.5− 6]× 10−1 Mpc−1), containing hundreds of galaxies, hot gas and mostly DM.

Milky-Way (MW) galaxy: MW is a barred spiral galaxy and part of the Local Group of galaxies with
mass ∼ 1012M�. It has a stellar disk of approximately 30 kpc in diameter and 0.3 kpc thick, and vvir ∼
100 km/s (virial velocity, defined below), with the halo of the MW being hundreds of kpc in size.

Dwarf galaxies: Dwarf galaxies are low luminosity, small size galaxies, with masses smaller than 109M�.
Regarding their mass, they can be further divided into: Bright dwarfs (M ∼ 107−9M�), classical dwarfs
(M ∼ 105−7M�), and ultra-faint dwarfs (M ∼ 102−5M�). Regarding their characteristics, they can be
divided into ellipticals, spheroidal and irregulars, that contain gas and star formation.

Dwarf Spheroidals (dSphs): Type of dwarf galaxy with a close to spheroidal shape, they have
low-luminosity with a very small quantity of gas and dust, and no recent star formation. They
present a large amount of DM and are usually the satellites.

2.1 Dark matter halos and substructures

A halo can be described as a virialized spherical mass concentration of dark matter. Halos are formed by
gravitational collapse of a non-linear overdense regions that stopped expanding to collapse into a sphere in
virial equilibrium5. The virialization of the halo happens through violent relaxation, where the DM particles
scatter on small fluctuations of the gravitational field present in this distribution, taking a time tdyn, the
dynamical time, to fully cross the sphere. Once this process is completed, at tcoll, the dark matter halo has a
radius approximately 1/6 of the radius of the region it collapsed from, and average density (Schneider 2015)

〈ρ〉 = (1 + δvir) ρ̄(tcoll) , (2)

where ρ̄ is the mean density, and (1 + δvir) ≈ 178Ω−0.6
m . Given this, the dark matter halo is defined as the

spherical region where the density is approximately 200 times the critical density of the universe at a given
redshift, with mass given by:

M200 =
4π

3
R3

200 200ρcr , (3)

where ρcr = 3H2(z)/(8πG). The virial velocity is given by the mean circular velocity at the virial radius,
V 2

200 ≡ GM200/R200. With that, one can express the evolution of the mass and virial radius with respect to
V200: M200 = V 3

200/10GH(z) and R200 = V200/10H(z). We can see from these expressions that halos that form
early in the evolution of the universe are less massive, while late-forming halos are more massive and larger.

This definition is not unique and depends on the choice of the virial overdensity parameter6, ∆, which above
was taken to be ∆ = 200ρcr/ρ̄. More generally, (3) can be written as Mvir = (4π/3)R3

vir∆ ρ̄. The values of ∆

4 The masses are indicated in terms of the solar mass M� which is equivalent to 2× 1030 kg in SI units. Distances are denoted
in parsec (pc), where 1 parsec corresponds to 1 arcsecond of measured parallax, and it corresponds in SI units to 3.1× 1016 m.

5 Virial equilibrium means that it obeys the virial theorem Ekin = −2Epot and conservation of energy. So we can describe the
system only in terms of the radius R and thee mass, M (or velocity V ) of the spherical mass concentration.

6 Not to be confused with the dimensionless power spectrum defined in (1).
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can vary in the literature, with some common definitions being ∆ = 333 at z = 0 for a fiducial cosmology given
by (Ade et al. 2018), which asymptotes to ∆ = 178 at high-z (Bryan and Norman 1998); or a fixed ∆ = 200 at
all redshifts, usually denoted by M200m.

We identify the DM halos from numerical simulations, the N-body code P3M (Efstathiou et al. 1985), and
can extract from them the abundance of halos as a function of their mass for a given redshift. The individual
halos can also be analyzed in those simulation and the radial mass profile can be determined. A surprising
feature encountered in those simulations is that halos appear to have a universal density profile, averaged over
spherical shells. Their functional form is characterized by the Navarro, Frenk and White (NFW) profile (Navarro
et al. 1997),

ρNFW(r) =
ρs

(r/rs) (1 + r/rs)
2 →

{
1/r , for r � rs

1/r3 , for r � rs
(4)

where rs is the radius where the slope of the profile changes and ρs = ρ(rs). We can see that this profile diverges
towards the center of the halo, presenting a cusp. The amplitude of the density profile can be written in terms
of R200, as we can see from (3),

ρ̄ =
3

4πR200

∫ R200

0

4πr2ρ(r) dr = 3ρs

∫ 1

0

x2

cx (1 + cx)
2 dx , (5)

where x = r/R200, and c := R200/rs is the concentration index and describes the shape of the distribution. With
that, the NFW profile can be determined completely by R200 (or M200 or any other halo radius definition),
and the parameter c. The shape of the concentration can be inferred from the same P3M simulation, where

c ∝ (M/M∗)
−1/9

(1 + z)
−1

. We can see that, early-forming halos have a smaller radius, and they are denser
than the larger ones, given the higher concentration. The NFW profile can be generalized for a three-parameters
profile that better fits the DM profile of halos for all ranges in mass (Einasto 1965; Navarro et al. 2004; Gao
et al. 2008).

Above we presented the spherically averaged density profiles of DM halos, described by the NFW profile.
Although this presents a good fit to DM N-body simulations (that assume spherical symmetry and use shells
that are distributed radially) and some observations, halos are not spherical. From halo and large cosmological
simulations (Schneider et al. 2012; Jing and Suto 2002; Kasun and Evrard 2005; Bailin and Steinmetz 2005;
Allgood et al. 2006) we can see, however, that the majority of the DM halos are elliptical or triaxial, with their
axis aligned with the cosmic web structure. This non-spherical structure and intrinsic alignment might come
at formation of the halos from the tidal field. The halo triaxiality plays a crucial hole in the interpretation of
lensing data, cluster morphology and Sunyaev-Zeldovich measurements (for reviews on this topic, see (Joachimi
et al. 2015; Kiessling et al. 2015), and needs to be taken into consideration.

Surface brightness of galaxies
Our capacity of observing galaxies is limited by the brightness of the sky. They can only be observed if
their surface brightness, which is the brightness per area, is higher than the sky surface brightness7where
the area A is the area of the survey (µB = 23 mag/arcsec2). This can limit our understanding of the
distribution of galaxies, making us miss the fainter ones. The surface brightness of a galaxy is described
with respect to the radius R (Binney and Tremaine 2008) as Sp(R) = Sd exp(R/Rd) ∝ exp(−kR1/m),
where Rd is the disk scale length, and in the second equality we have the empirical S érsic law. Therefore,
we have the following nomenclature for the galaxies with respect to their surface brightness.

Low surface brightness (LSB) galaxies: There is no formal definition for LSB galaxies, but in general
they are disk galaxies that have surface-brightness smaller than µB. They are believed to make the
majority of the galaxies in our universe, and most of the LSB galaxies are dwarf galaxies. However, this
is not necessarily the case, with LSB galaxies being galaxies in a broad range of masses, and very diverse
morphologies. This low luminosity is likely associated to a small star formation rate in those galaxies.
So those galaxies are believed to be DM dominated. Their rotation curves8usually reach much smaller
speeds than the ones from high surface brightness galaxies (see below), with a very slow rise before
reaching the plateau region given their lower density, but broaden mass distribution.

High surface brightness (HSB) galaxies: They are usually defined as galaxies that are brighter than µB.
They are the usual galaxies we study. The rotation curves are known to reach high velocities with a steep
rise, coming from the inner region that has a higher density of baryons with narrower mass distributions
than LSBs, which is described by the Newtonian baryonic acceleration. This is followed by a Kleplerian
fallout to the flat part of the rotation curve.
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2.2 Discrepancies in comparison with observations

In this section we will show how some of the theoretical predictions from simulations of the small scales con-
sidering the ΛCDM model compare with respect to astrophysical observations. However, this comparison is not
straightforward, since we indirectly probe the dark matter inferring it from the visible matter that traces the
gravitational potential of galaxies and clusters. There are a few approaches to connect the information of galaxies
and the dark matter halos like forward modelling, abundance matching and kinetic measurements, and each of
those methods has its difficulties and limitations. The result of this comparison is a series of discrepancies that
challenges the results of the simulations, and in some cases limitations in observations. We will present some of
these challenges in this section. Some of those challenges might have complementary origin and solution, and
are indeed connected, as we will discuss bellow.

2.2.1 Cusp-core

As we saw above, the expected density profile from colisionless simulations is the NFW profile which is cuspy
towards the central region of the halo. Given the complex dynamics of baryonic matter in some galaxies, good
laboratories to probe the halo structure are low surface brightness (LSB) galaxies and late-time dwarfs. Those
systems are dominated by DM throughout their halo up until the central regions. Measuring the rotation curves
of dwarf galaxies, (Flores and Primack 1994; Moore 1994) found that those measurements preferred cored
isothermal profiles. Many other measurements of the rotation curves of those systems (McGaugh and de Blok
1998; Côté et al. 2000; van den Bosch and Swaters 2001; Borriello and Salucci 2001; de Blok et al. 2001b,a;
Marchesini et al. 2002; Simon et al. 2005; Gentile et al. 2005, 2007; Kuzio de Naray et al. 2006, 2008) have
confirmed this discrepancy, showing that a constant density core with a profile with a slope γ = 0−5 (considering
the profile at small radius given by ρ ∼ 1/rγ). The smallest values for this slope from dissipationless simulations
are too large in comparison to the ones obtained by observations.

The recent measurement of nearby dwarf galaxies from the survey THINGS (HI Near Galaxy Survey) (Oh
et al. 2011) and LITTLE THINGS (Oh et al. 2015) confirmed this discrepancy. Measuring the rotation curves
from 7 and 26 nearby dwarfs, they found that the inner slope is much smaller than the NFW one (γ = −1),
with γ = 0.29± 0.07 for the LITTLE THINGS survey, as we can see in Fig. 3.

Fig. 3 Figure adapted from (Oh et al. 2011), showing the results from the THINGS and LITTLE THINGS surveys. The plot shows
a comparison of the velocity versus radius (rotation curve) (left panel) and density versus the radius (right panel), normalized by
R0.3, and V0.3 andρ0.3, from the theoretical parametrizations of the NFW potential (solid line) and the pseudo-isothermal (dashed
line), with the simulated galaxies (Governato et al. 2010), represented in the plots by the legend DG1 and DG2. In the plots
observational data from 7 dwarf galaxies measured by THINGS is represented by the other points. The crosses represent the
median values of the LITTLE THINGS rotation curves and density profile. We can see that the galaxies seem to follow a cored
profile, while NFW predicts a cusp.

The situation is more complex for high surface brightness (HSB) objects given its complex inner density
structure; or for galaxies with large mass, like spiral galaxies, where at small radii is dominated by baryonic

8 The brightness of an object is a measure of the amount of light (luminosity) that we detect: B = Luminosity/4πd2, where d is
the distance to the object. We use magnitude to measure the brightness of an object in a scale without units, and represented by
mag.

8 A rotation curve of a galaxy shows the change in the orbital circular velocity of stars or gas clouds with respect to the distance
from the center of the galaxy. An example of a rotation curves can be seen in Figure 3 for dwarf galaxies. Different types of galaxies
present very distinct rotation curves, such as low or high surface brightness galaxies. This can be seen in Figure 14.
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matter. Even in the case of dwarf galaxies, it was pointed out that some systems present cuspy profiles, while
others cored ones, presenting an unexpected diversity in the rotation curves (Oman et al. 2015). Since different
results were obtained by different techniques for the same system, this shows that determining the inner slope
of galaxies is a hard task.

The origin for these discrepancies can come from the fact that the simulations take into account only DM,
while the properties of galaxies are also influenced by the presence of baryons. The newest hydrodynamical
simulations obtained by many independent groups have shown that baryonic feedback can in fact soften the
inner cusps in the profile and generate core-like profiles like the ones observed for dwarf galaxies. The main
effects are supernova feedback flattening and dynamical friction from baryonic clumps (for a more detailed list of
these and other baryonic processes, see (Del Popolo and Le Delliou 2017)). These simulations show a threshold
mass of Mvir ∼ 1010M� below which the simulation predict profiles that are cusped (Governato et al. 2012;
Munshi et al. 2013; Madau et al. 2014; Oñorbe et al. 2015; Tollet et al. 2016; Fitts et al. 2017).

However, not all simulations agree with this result. Additionally, modelling those baryonic feedback effects
is challenging, and introduce many new parameters and uncertainties in modelling assumptions. Finally, not all
baryonic processes that might influence the formation and dynamics of galaxies were included in the simulations,
and that might reveal to be important for the result. It is clear that the inclusion of baryonic effects is hinting
in the right direction, but until consensus is achieved, alternatives need to be considered. As mentioned before,
a modification of the properties of DM might in a simple way account for that, as we will show for the case of
Bose–Einstein condensate DM. An early solution to the cusp-core problem, and that explains the rotation curves
with exquisite precision is a modification of the dynamics of gravity on small scales, the MOdified Newtonian
Dynamics (MOND). This is also a solution for the regularity versus diversity challenge, and its main points and
shortcomings will be presented at the end of this section.

2.2.2 Missing satellites

Structure formation is hierarchical in nature and it is expected that the DM halos are also populated by small
subhalos. This is confirmed in ΛCDM simulations of Milky-Way sized halos, which show that the subhalo mass
function diverges toward low masses, limited only by the numerical limit. Those simulations then predict several
hundreds of subhalos with vmax ∼ 10 − 30 km/s, that are large enough to host a galaxy (Mpeak & 107M�),
where Mpeak is the maximum virial mass the halos had when they formed. On the other side, until 2005 only
12 MW classical satellites were known, with 15 more confirmed ultra-faint satellite galaxies until 2014, with
the data from Sloan Digital Sky Survey (SDSS) (Drlica-Wagner et al. 2015). To date, with the inclusion of
Dark Energy Survey (DES) data, a few more ultra-faint candidates were discovered, with the known count of
satellites of more than 50. However, the number of MW galaxies satellites is still much smaller than the number
predicted from simulations. This is known as the missing satellites problem, and not only appears in the MW,
but also in the Local Group.

DES and future observations are expected to discover more of those ultra-faint galaxies, which can alleviate
this discrepancy, but there is still a debate if this will solve the problem. Another possibility is that low-mass
subhalos are there, but we just cannot see them, since they have very low baryonic content. One can expect that
for low mass subhalos, galaxy formation is suppressed since the photoionizing background heats the gas, reducing
its cooling rate and inhibiting gas accretion for Mvir ∼ 109M� (Efstathiou 1992; Bullock et al. 2000; Benson
et al. 2002; Bovill and Ricotti 2009; Sawala et al. 2016). Star formation is also suppressed since supernova-driven
winds could strip the gas out of these halos (Dekel and Silk 1986). Other mechanisms can also suppress the
baryon content in the low-mass galaxies, see (Del Popolo and Le Delliou 2017), like reionization suppression. So,
the visible subhalos are only a set of the entire distribution of halos that contains the non-visible faint end. It
was shown recently in the hydrodynamical simulations APOSTLE (Sawala et al. 2016; Zolotov et al. 2012; Zhu
et al. 2016) that apparently this mechanism can solve the difference in the number of predicted and observed
satellite galaxies, thus solving the missing satellite problem. But the question remains if this process needs to
be too finely tuned to solve the problem.

Too big to fail

The above mechanism that could solve the missing satellite problem leads to another challenge: the too
big to fail problem. When we say that the visible subhalos of the MW are only a set representing the most
massive subhalos in the total distribution of subhalos, to have agreement with ΛCDM simulations these visible
MW subhalos need to correspond to the most massive subhalos predicted by the simulations. But, the most
massive subhalos predicted by those simulations have central masses9(Vmax > 30km/s) that are too large to
host the observed satellite galaxies (Boylan-Kolchin et al. 2011, 2012), and the ones that have central mass

9 The central mass is equivalent to quoting Vmax since V 2
circ = GM/R, where the maximum circular velocity is defined as the

peak of the rotation curve and it is a quantity less affected by tidal stripping (Penarrubia et al. 2008).



Ultra-light dark matter 11

like the expected by the MW (with 12 < Vmax < 25km/s) are not the most massive ones. So, the puzzle is
why should the most massive subhalos, where the gravitational potential is the strongest and the striping gas
mechanisms cited above are not important, be too big to fail to form stars and galaxies? This is illustrated in
Figure 4. This problem also appears in the galaxies in the Local Group and Local Volume (Papastergis et al.
2015; Garrison-Kimmel et al. 2014), so it is not a specific property of the MW.

Fig. 4 Figure adapted from (Bullock and Boylan-Kolchin 2017), showing the circular velocity versus the radius of specific subhalos
from the Aquarius simulation that have Vmax > 30km/s (magenta lines). Those are known to have halos that are very massive and
expected to host the formation of starts. However, as we can see from the data points corresponding to classical MW satellites with
masses M ∼ 105 − 107M�, in the most massive of those subhalos, with M > 108M� shown in the gray region of the plot, we do
not observe satellites. This means that the more massive subhalos predicted by the simulations are too big to fail to form stars and
galaxies.

This higher central mass from the most massive sub-halos predicted by simulations in comparison to the
MW dSphs, seems to be a more general feature that appears in simulations. This discrepancy might indicate a
more delicate issue related to the internal structure of the sub-halos. In this way, the too big to fail problem is
more than just the problem related to the missing satellites problem, as stated above.

Like for the other problems, it was proposed that some astrophysical processes driven by baryons could be
important on those scales and solve the too big to fail problem. However, these solutions seem to only work for
the MW and for very efficient feedback, like the supernova feedback that only solves the too big to fail problem
if very efficient. This is an intense topic of debate and no consensus appears to have been reached. As these
notes were being written, there has been claims that the the too big to fail problem has been solved (Ostriker
et al. 2019).

As for the cusp core problem, different DM physics could solve those problems by having a mechanism that
suppresses the formation of small scale subhalos, and that reduces the central densities of massive subhalos
(or modifies the dynamics of the central regions). We are going to show how the models with Bose–Einstein
condensation address some of those problems.

2.2.3 Diversity vs. regularity: scaling relations

Although our universe came from very smooth initial conditions, nowadays the diversity of galaxies that we find
in the universe is extraordinary. This incredible diversity of galaxies, though, presents a surprising regularity.
This fact is manifest in several scaling relations, that are shown to hold very tightly for a diverse range of galaxies.
These relations relate the dynamical and baryonic properties of galaxies, and hold even for DM dominated
systems, and they are one of the most tantalizing aspects of galaxy phenomenology, representing the most
pressing challenge for ΛCDM on small scales.

The most famous of those relations is the Baryonic Tully–Fisher relation (BTFR) (McGaugh 2005, 2008),
which relates the total baryon mass (including stars and gas) of the galaxy to the asymptotic circular velocity
in galaxies, Vf (this is the velocity measured at the flat portion of rotation curves):

V 4
f = a0GMb , (6)

where a0 is the critical acceleration, a scale that appears in observations. Its value can be obtained from the
data and given by a0 ∼ 1.2× 10−8 cm/s. The BTFR expands the regime of validity of the Tully Fisher relation
which relates the luminosity, instead of the total mass, to the circular velocity. Luminosity is a probe of the
stellar mass, and in the BTFR the observed gas mass is also considered on top of the stellar mass. This extends
the validity of the scaling relation by many decades in mass. This empirical scaling relation is shown to hold for
large ranges of masses, 6 generations, with a very small scatter, compatible to the size of the error bars. The
left panel of Fig. 5 presents the BTFR. As we can see, the slope of the BTFR is different from the one predicted
by ΛCDM, V 3

f ∝Mb, shown by the dashed line.
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Fig. 5 Left panel: The figure shows the Baryonic Tully–Fisher Relation (BTFR) from (Famaey and McGaugh 2012), which shows
the relation between the baryonic total mass (Mb) and the asymptotic circular velocity. Dark and light blue points represent star
and gas dominated stars, respectively. The dashed line represents the relation expected for ΛCDM, with slope equal to 3; while
the dotted line which better fits the data, has slope 4. Right panel: Plot of the Radial Acceleration Relation from (McGaugh et al.
2016), for 153 SPARC galaxies. The fit to the data is given by the solid line while the dotted line is the unit line. The insert is a
histogram of the residuals. The red uncertainty bars represent the uncertainty in each individual point. The lower panel shows the
residuals, and the red uncertainty bar shows the mean uncertainty on individual points. The dashed lines represent the rms value
in each bin and the solid red lines represent the observational uncertainties and variation between the stellar mass-to-light-ratio
from galaxies.

There is another general scaling relation that also displays the interesting behaviour of galaxies: the mass
discrepancy acceleration relation (MDAR). This is more general since the BTFR can be obtained from the
MDAR at large distances in the disk. The MDAR is a relation between the gravitational acceleration from
baryons alone (gbar), from the distribution of gas and stars in galaxies (McGaugh et al. 2016; Lelli et al. 2017),
and acceleration inferred from rotation curves (gobs = V 2/r). As it can be seen in the right panel of Fig. 5, this
scaling relation shows a remarkably tight correlation between these quantities for very diverse and large number
of galaxies This can be seen by comparing the interval determined by the solid red lines and the uncertainty
in each individual point, represented by the red uncertainty bars on the top figure, with the dashed lines show
that the data is compatible with negligible scatter.

This relation shows us that in regions of high acceleration, where gobs > a0 and baryons dominate, one has
gobs ∼ gbar. For low accelerations, in the central regions where it is expected to be DM dominated, this relation
deviates from the unit line. This suggests a very curious behaviour: the baryon mass distribution dictates the
behaviour of the rotation curve at all radii, even for the regions expected to have less baryons. And this behaviour
holds even for galaxies that are DM dominated.

These empirical relations, coming directly from observations, show the surprising feature that in galaxies the
dynamics is dictated by the baryon content, even when DM dominates. Even more unexpected these relations
are very tight, showing very little spread, even if they come from very diverse types of galaxies. As pointed out
in (Bullock and Boylan-Kolchin 2017), in these correlations what dictates the dynamics is the baryon mass,
which is the sum of gas and stars, and not only the stellar mass, which is the one that is expected to correlate
more with the total feedback energy.

Recently it was shown by many groups that these relations can be explained within the ΛCDM paradigm
(Navarro et al. 2017; Ferrero et al. 2017; Garaldi et al. 2018; Dutton et al. 2019; Navarro 2019) using the
latest hydrodynamical simulations like EAGLE (Schaye et al. 2015; Crain et al. 2015), APOSTLE (Sawala et al.
2016), Illustris (Illustris 2014), ZOMG (Borzyszkowski et al. 2017; Romano-Diaz et al. 2017; Garaldi et al. 2017),
and NIHAO (Wang et al. 2015). Those simulations include several baryonic effects (like star formation, stellar
evolution, metal enrichment, gas cooling/heating, galactic outflows and BH feedback, among others) to their
ΛCDM simulations10. Those new large volume and high resolution simulations, like Illustris and EAGLE, have

10 This review will not enter in the details of such baryonic effects that are taken into account in those simulations. This is a field
of its own, very rich and fast developing, and discussing those effects is not the scope of this review.
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also been able to reproduce the features of the rotation curves of galaxies within ΛCDM. This large amount of
progress in the simulation side is very encouraging.

However, some questions still remain. While the BTFR and the MDAR trends can indeed be reproduced
by those simulations, it is pointed out by most of the authors that the scatter obtained in the scaling relations
is larger than the one expected from data (some authors claim that this spread is correlated with the errors in
the stellar feedback). The question remains though whether this is a matter of improving the feedback models
and/or resolution of the simulation, or if given the stochastic nature of the feedback effects, they will ever be able
to give such tight correlations. Another point that is important to be answered is about the importance of these
baryonic feedbacks, since these groups do not agree on how very sensitive to the feedback model the simulations
are, which is intriguing. The way those effects are introduced in the simulations is by parametrizing their effects,
instead of introducing all of these feedback mechanisms from first principles, which is understandable given the
complexity of each of those phenomena. This includes many new parameters to the simulations. And different
simulations might use different parametrizations. Those simulations also still do not go all the way until dwarf
galaxies11, which are DM dominated and where most of the tension is. In summary, this is a very challenging and
exciting field and a lot of progress has been done on the simulation side with results that are very encouraging
to explain the formation and dynamics of galaxies. But there are some uncertainties in those results and the
simulations still do not fully reproduce the observations.

2.2.4 What the small scales tell us

As we saw above, the small scales hold precious information that can help us understand astrophysical processes,
or even the nature of DM. This is revealed by the challenges presented above, which show rich dynamics
on galactic and sub-galactic scales. There are a number of ways that these discrepancies can be addressed.
Within ΛCDM, this can done by including baryonic effects, which as we saw in the previous sections seem
to address partially or completely some of those puzzles. Another proposal for solving some of the puzzles of
galactic evolution is more radical and proposes a universe without DM that has a modified force law for small
accelerations, the MOdified Newtonian Dynamics (MOND). See box bellow for a discussion of MOND.

A third avenue is to modify the DM paradigm. Different models of dark matter can affect the formation of
structures in distinct ways, both in the linear and in the non-linear regimes. Therefore, the small scales offer
an opportunity to probe the microphyics of DM, beyond the hydrodynamical large scale CDM paradigm. The
non-linear regime can be specially changed by modifications of this paradigm, as we can see in Fig. 2. This
regime can be probed using galaxies, and for even smaller scales satellite galaxies and studying substructures.
This could help find new properties of DM, that could help elucidate its nature.

MOND empirical law - Milgrom, in (Milgrom 1983a,?,b), motivated by the scaling relations and rotation
curves of galaxies, made a remarkable observation about the mass discrepancy in galaxies. He observed
that the mass discrepancy can be determined by the observed baryonic matter, and can be described by
the simple empirical law,

a =

{
aN,b , for aN,b � a0 ,√
a0 aN,b , for aN,b � a0 ,

(7)

where aN,b = GMb(r)/r2 is the Newtonian acceleration due to baryons. The scale a0 appears naturally
from observations, like we saw in the previous subsection, and its value can be fitted by the data12giving
a0 ∼ 1.2 × 10−8 cm/s

2
. This scale separates the regimes where the centripetal acceleration experienced

by a particle is given purely in terms of the Newtonian (baryonic) acceleration at large acceleration, and
at small acceleration, by the geometric mean of aN,b and a0.
The relation works very well fitting the rotation curves of galaxies, both HSB and LSB galaxies. LSB
galaxies (which were predicted by Milgrom), are DM dominated, or in the language of MOND, have low
accelerations, given their low stellar surface density. It is also remarkably successful in explaining the
empirical scaling relations (for a review see (Sanders and McGaugh 2002; Broeils 1992; Begeman et al.
1991; Famaey and McGaugh 2012)).
More importantly, this empirical relation reveals a very interesting and curious fact. It seems that the
dynamics in galaxies is driven by the baryons, even for galaxies that are DM dominated. This seems to
indicate a long range correlation between baryons on galaxies.

This fact made Milgrom think that a fifth force was responsible for this correlation, instead of DM, and
that this relation could come from a modification of gravity at those scales. In order to try to get the
empirical law (7) as a modified gravity theory, (Bekenstein and Milgrom 1984) described an effective
theory for MOND, which we will call full MOND. This can be accomplished by having a scalar field

11 To my knowledge. But as I said, it is a fast moving field.
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coupled to gravity with effective Lagrangian,

LMOND = −
2M2

pl

3a0

[
(∂φ)

2
]3/2

+
φ

Mpl
ρb , (8)

which represents a scalar field with a non-canonical kinetic term that is conformally coupled to matter.
This Lagrangian, for static and spherically symmetric source, results in a modified Poisson equation

∇ ·
( |∇φ|

a0
∇φ
)

= 4πGρ , φ′ =

√
a0
GM(r)

r2
=
√
a0aN,b (9)

where in the second equation the spherical symmetry was assumed with “′” denoting derivative with
respect to the radial coordinate. This theory describes that on top of the Newtonian force, there is a
scalar field mediated force, which is given by the MONDian acceleration. This is a simplified version
of their theory, since in their theory they have a way of making an interpolation between the different
regimes. This theory also has a fractional power kinetic term, which might be problematic.
With the current precise observations on large scales, specially from the CMB anisotropies and lensing
observations, any theory that does not have DM is not compelling. Indeed, this is a problem for theories
without DM, in particular MOND, since the measurement of the third peak of the CMB anisotropies (Sko-
rdis et al. 2006; Skordis 2009). This full MOND theory cannot explain galaxy clusters, since it does not
predict an isothermal profile. Many attempts were made to extend MOND, by including DM, to try to
explain the observation on scales larger than galactic, or extending it to relativistic regimes (see reviews
cited above).
However, the empirical relation (7) is incredibly successful. That alone, without the assumptions of full
MOND (no DM and modified gravity), even in the context of ΛCDM, is a powerful statement about how
DM is distributed in galaxies: in regions where baryons dominate, the theory behaves like Newtonian
theory, and in regions where the DM dominates, the DM mass is uniquely determined by the baryonic
distribution, GM(r)/r =

√
GMb(r)a0.

Given the shortcomings of the full MOND, but the great successes of the empirical law, instead of trying
to obtain this theory from a fundamental Lorentz invariant theory, the idea is to obtain the MOND
dynamics from a theory of DM. In this way, MOND dynamics emerges only at galactic scales while
maintaining the CDM behaviour on large scales. This is achieved in the theory of DM Superfluid that
will be presented in Section 4.

The goal of this section was two-fold. First, we wanted to give an overview of the so called small scale problems
of the CDM, which was the motivation for some ULDM models to be proposed. We wanted to introduce the
problems in a way that the reader can understand why the mechanisms proposed by the models in Section 4
address and solve each of those small scale controversies. For example, we are going to see that the FDM model
has to have a certain range of mass in order to solve the cusp-core problem and the satellite problem; or that
the DM superfluid model has a modified dynamics of small scales, reproducing the MOND behaviour, which
explains the rotation curves of galaxies and the scaling relations.

The second goal, and perhaps the most important was to give an brief overview of the rich astrophysics
that takes place in galaxies, introducing important concepts and observations available on these scales. This
is important since the main feature of the ULDM models is to present a new phenomenology on small scales
coming from the non-CDM behaviour of ULDM. In this way, the small scale observables offer an important
window to test the nature of DM.

3 Bose-Einstein Condensation and Superfluidity

In this section, we present a short review of Bose–Einstein condensation (BEC) and superfluidity. The goal of
this section is to give an introduction to the basic theory, properties and the methods used to describe those
systems, so they can be applied for the case of DM in the next section. The different description of those systems
and their limit of validity are very important to be able to understand the construction and validity of the DM
models presented next and why they present different phenomenologies and astrophysical consequences.

Bose–Einstein condensation is one of the most fascinating phenomenon of quantum mechanics. Since it was
theorized in the year of 1920s, by Satyendra Nath Bose and Albert Einstein, its experimental realization opened

12 A funny numerical coincidence is that the measured scale a0 is related to the Hubble parameter today, a0 ≈ cH0/2π, which is
natural units yields a0 ∼ H0. Does this indicate something?
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the door for many advances in the physics of many-body systems, and even to the application of this phenomenon
in other fields like cosmology. Its first experimental realization was done in 1995 by two independent groups using
laser and magnetic cooling device to cool down rubidium atoms gas (Anderson et al. 1995; Davis et al. 1995).
Nowadays, BECs are observed in helium, ultra-cold atomic gases, quasi-particles in solids, multi-component
(mixtures) of BECs, among other systems.

Following on the works of (Bose 1924), which described the quantum statistical properties of photons,
Einstein extended this concept to a gas of non-interacting particles of integer spin, later called bosons as a
tribute to Bose, that follows a Bose–Einstein statistics (Schay 1924). This Bose gas has the property that at low
temperatures a large number of these bosons, described then as quantum oscillators, condense into the lowest
momentum state, exhibiting long range coherence. This physical phenomenon initiated the idea of Bose–Einstein
condensation.

A BEC is defined as a system where at very low temperatures a large fraction of the bosons of the system
occupy the lowest energy state of a configuration. This macroscopic occupancy of the ground state is an inherently
quantum mechanical phenomenon. Physically we can interpret it as a consequence of the wavelike nature of
these particles at low temperatures, where the de Broglie wavelength of these bosons is larger than the inter-
particle separation, and their wavepackets superpose and form a coherent macroscopic wavefunction describing
the entire system. The BEC is then described by a single wavefunction of the system, linking to the long range
coherence property of a condensate.

A few years after BEC was theorized by Einstein, another intriguing macroscopic quantum mechanical phe-
nomenon was discovered: superfluidity. In 1937, (Kapitza 1938) and independently (Allen and Misener 1938),
conducting experiments with helium-4 realized that after cooling down this liquid to a certain temperature, the
fluid starts flowing without friction, even climbing the walls of the container where it was stored. Fluids that
exhibit this behaviour, characterized by a zero viscosity, are called superfluids. Landau provided a phenomeno-
logical description of this effect which rendered him the Nobel prize in 1962. It was proposed by (London 1938),
after the development of laser cooling techniques for atomic gases, that the properties of He4 superfluid are
related to BEC. This was not obvious given that the (textbook) description of BEC as an ideal non-interacting
Bose gas, contrary to 4He that is a strongly interacting fluid. This gave relevance to the, until then, only theoret-
ical ideas of Einstein, and BEC became a rich topic of research. The relation between superfluids and BECs was
confirmed years latter in ultracold atomic gases where almost the entire fluid at low temperatures is condensed
and exhibits superfluidity.

It is very challenging to describe the strongly interacting helium system. A weakly interacting Bose gas
was then proposed by Bogoliubov, as a modification of the non-interacting Bose gas model, in order to study
the Bose–Einstein condensation and superfluidity. In this way, superfluids can be modelled by a Bose–Einstein
condensate that has self-interaction, and superfluidity is described as being achieved through interactions in
a BEC. Notice that BEC can happen even in the absence of self-interaction, as seen above, since it is a sta-
tistical property of a gas of bosons in low temperature, but this system does not exhibit superfluidity. The
weakly interacting theory is used to describe many superfluid systems at certain limits. This description, tough,
evolved in the last few years in order to extend and generalize this framework to finite temperature systems,
mixtures and even stronger interacting system corrections. New frameworks also emerged in order to describe
different systems that cannot be modelled by the weakly-interacting theory. One of those ideas based on the
hydrodynamical description is to write these systems as an effective field theory (EFT) in order to describe the
system macroscopically using symmetry alone without the need of working its microscopic description. This
EFT, depending on the symmetries of the system, can recover at some limits the weakly interacting superfluids,
but also can be used to describe more general superfluids, superconductors and even systems like the unitary
Fermi gas (Kevrekidis et al. 2001; Baker 1999), which is a gas of fermions that interact through a strong 2-body
coupling that is a superfluid in the ground state.

The theoretical description of those condensed matter systems, together with the experimental efforts, is a
field of research that is in fast development. In this review we are going to describe the basic concepts on BEC
and superfluid, and detail the different descriptions and properties of these systems. We start by describing
the non-interacting ideal gas, where condensation was first conceptualized in order to present in more detail
the definition and the conditions for condensation. We then start to describe superfluidity. We show first the
definition of superfluidity as defined in Landau’s theory of superfluidity. We then describe a more concrete
model for a BEC where superfluidity is present, the weakly interacting Bose gas. This is the simplest example of
superfluidity. We show how this model describes condensation and superfluidity. We then follow to show the field
theory description of the superfluid, where the system is described as a system which undergoes spontaneous
symmetry breaking caused by the condensate. This description brings advantages and makes clear the study
of many features in BECs and superfluids. As a low energy description of the superfluid, we present the EFT
of superfluids as another description of more general superfluid systems. We finalize describing what happens
when we rotate a superfluid, showing the nucleation of vortices upon rotation.

Not linked to what we will discuss in the review, but an important fact. Nowadays, it is known that su-
perfluidity is not necessarily linked to condensation. Recent investigations seem to point that there are states
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where you can have superfluidity for the majority or all the particles in the system, while only a small fraction
is condensed. This happens for example for liquid helium below a certain temperature.

3.1 Non-interacting ideal gas

We start our discussion with the non-interacting Bose gas. The properties of this system are a consequence
purely from the quantum statistic of indistinguishable bosons. We will see that in the grand canonical ensemble
we can write the Bose distribution function in which we can see the conditions for Bose–Einstein condensation.

We want to describe here a theoretical gas of many non-interacting bosons in a box. In a system with a large
number of particles (N), it is impractical to try to determine the state of each particle or even the collective
many-body wavefunction that describes this system Ψ(r1, · · · , rN , t). In this sense, to describe a system with
many particles that can occupy many different states, we represent the system using a statistical ensemble
description. To describe the state of this collective system, one does not need to label the state of each particle,
but to determine the number of particles in each state of the system. The ensemble that is specially convenient
for this task of deriving the probability of microscopic states is the grand canonical ensemble (GCE). Since our
system is composed of bosons, which are indistinguishable particles Ψ(r1, r2, · · · , rN , t) = Ψ(r2, r1, · · · , rN , t),
called Bose symmetry, this ensemble is useful to describe the system where many particles can occupy the same
state.

The GCE is a statistical ensemble that describes a system that is in contact in thermal and chemical
equilibrium with a large reservoir, in a way that there is exchange of energy and particles with the reservoir.
This exchange of particles with the reservoir makes the number of particles in the system to fluctuate, although
the number of particle of the system plus reservoir is constant. As the system is in equilibrium the energy and
particle number fluctuate around an average. This ensemble can be described by the following constants: the
chemical potential (µ) and the temperature (T ), which hold for a system (of volume V ). If the GCE is applied
to small systems, an additional condition is necessary: that the gas is diluted. In principle, the probability of
finding the system in a state s with energy εs and ns particles, or occupation number ns, is given by:

Ps =
1

ZGC
s

eβ(µns−εs) , with ZGC
s =

∑
s

eβ(µns−εs) , (10)

where β = 1/(kBT ), with kB the Boltzmann constant. The chemical potential µ = (∂E/∂N)S,V is the energy
required to add one particle to the isolated system, fully determined by N , the total number of particles, and
T . The chemical potential is defined to be negative (so no unphysical negative occupation occurs). The total
energy of the system is given by E =

∑
s nsεs. The normalization ZGC

s is the grand canonical partition function.
With the GC distribution function, we can then evaluate the average occupation number,

〈ns〉 =
∑
ns

nsPs =
1

eβ(εs−µ) − 1
, (11)

where the sum converges for µ < εs. This is the Bose–Einstein distribution. This gives us the total number of
particles in the system:

N =
∑
s

ns =
∑
s

1

eβ(εs−µ) − 1
. (12)

We can separate the total number of particles into two contributions,

N = N0 +NT , (13)

where N0 = 1/eβ(ε0−µ) − 1 is the number of particles with s = 0, which is the number of particles in the
condensate, with ε0 indicating the lowest energy of the single particle state. The number of particles that are
not in the ground state, not in the condensate, also called the thermal component of the gas, NT =

∑
s6=0ns.

We can replace the sum for an integral and, from the partition function, the thermal component is given by,

NT =
V

λT

∫ ∞
0

dε
ε1/2

eβ(ε−µ)
, (14)

where λT =
√

2π~2β. For a fixed temperature NT reaches a maximum when µ = ε0. So, NT is limited, meaning
that in this limit there is a finite number of particles not in the ground state. At this same point in this
limit, N0 can diverge showing that the number of particles in the ground state grows becoming macroscopically
occupied. This macroscopic occupation of the ground state is seen as a condensation and this phenomenon is
called Bose–Einstein condensation.

The critical temperature Tc defines the temperature below which there is the formation of the BEC. We can
define it as the temperature above which all the particles of the system are not going to be in the condensate:
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Fig. 6 In this figure we plot the number of particles in the ground state, normalized by the total number of particles, with respect
to the temperature for the non-interacting Bose gas. We show schematically that for higher temperatures T ≥ Tc the system is
in the normal state where the particles behave as free particles and occupy all energy levels. As the temperature is lowered, when
T < Tc we have the formation of a condensate described by a macroscopic wavefunction. When T = 0, all particles of the system
are in the ground state and we have a pure BEC, described by a single wavefunction.

NT(Tc, µ = ε0) = N . The chemical potential can be zero at Tc, and from (14), for the maximum µ = ε0 = 0, we
can get that

Tc =

(
2π~2

mkB

)(
n

ζ(3/2)

)2/3

, (15)

where n is the total number density and ζ(3/2) ≈ 2.612 is the Riemann’s zeta function. With that, for T < Tc,
we expect that most of the particles are going to be in the condensate, and the number of particles in the
condensate is:

N0/N = 1−
(
T

Tc

)3/2

. (16)

Complementary, the number of particle in the thermal component is NT = N (T/Tc)
3/2

. From that expression
we can see that the occupation becomes macroscopic towards small temperatures, as we can see in Fig. 6. This
indicates the formation of a BEC. This condition that a BEC can form for T < Tc can be translated into
the condition: nλ3

dB � 1, where λdB =
√

2π~2/(mkBT ) is the thermal de Broglie wavelength that gives the
coherence length of the gas. This condition indicates that the gas needs to be dilute in order for condensation to
happen. This condition is also equivalent to having the de Broglie wavelength of the particles overlap and the
system being described by a macroscopic wave-function. When T = 0, all the particles of the system will be in
the ground state and the condensate is described by a single macroscopic wavefunction. As we see from Fig. 6,
at high temperatures, condensation is broken and the system behaves as a gas of individual massive particles.

The de Broglie wavelength λdB: associated wavelength of a massive particle given by λdB = h/p = h/mv,
where p and v are the momentum and velocity of the particle with mass m, respectively. For an ideal
gas of temperature T in a volume V , we have the thermal de Broglie wavelength which determines
the coherent length of the gas. The thermal de Broglie wavelength can be defined then, where the
characteristic thermal momentum is pT =

√
2πmkBT , by:

λdB =

√
2π~2

mkBT
.

When the thermal de Broglie wavelength is much smaller than the interparticle distance (d), we have a
gas of free particles. Otherwise, we have condensation as studied here.



18 Elisa G. M. Ferreira

In summary, Bose–Einstein condensation can happen for ideal gases. The condition for condensation is that
the occupation number of the ground state is so large that becomes macroscopic when T < Tc. This can be
translated in a condition for condensation: if nλ3

dB � 1, there is the formation of a BEC. With that we can see
that this very simple theoretical model already shows this intriguing macroscopic quantum phenomenon that
would be confirmed experimentally many years later.

Condition for condensation of a non-interacting ideal gas

The condition for condensation of an ideal gas of N bosons in thermal equilibrium with volume V and
temperature T is:

T < Tc ⇐⇒ nλdB � 1 ⇐⇒ λdB � d ∼
(
V

N

)1/3

=

(
1

n

)1/3

These conditions state that the temperature must be smaller than the critical temperature; or that we
have a macroscopic occupation number of the ground state N0; or that the de Broglie wavelength needs
to be bigger than the mean space between particles in order to have quantum degeneracy. It is easy to
see that these conditions are equivalent.

3.2 Landau’s superfluid model and criteria for superfluidity

A few years after BEC was theorized, another striking macroscopic quantum phenomenon was observed, super-
fluidity. Landau constructed a phenomenological theory to explain the results of superfluidity in helium, which
was observed to flow in thin capillaries. This phenomenological theory, however, is quite general to describe
superfluids and gives general conditions for the appearance of superfluidity.

This theory has the goal of explaining why in superfluids charge is transported without friction. As we
described above, according to London’s ideas, in order to have superfluidity one needs to have a BEC. The
condensate has the role of transporting charge. So we consider a superfluid as the condensate that transports
charge without losing energy. Dissipation of the condensate, which is equivalent to friction in the fluid, is caused
by exciting particles out of the condensate. We have a supeffluid in the limit of no or low dissipation, and the
superfluid is lost in the limit of high dissipation. We present now the conditions for that to happen.

Consider a superfluid moving through a capillary with velocity vs. The energy of elementary excitations is
given by (Pitaevskii and Stringari 2016),

E = Ekin + εp + p · vs , (17)

in the rest frame of the capillary. The kinetic energy of the fluid is given by Ekin, and εp > 0 and p are the
energy of the excitation and momentum in the frame of the fluid, and translated to the frame of the capillary.
Dissipation happens when εp + p ·vs < 0. This can only be negative if its minimum, when εp + pvs cos(θ) where
θ = nπ for n integers, is smaller than zero: εp − p vs < 0. With that we can determine the critical velocity:

vc = min
p

εp
p
. (18)

For vs < vc, with vc 6= 0, the system transports charge without dissipation and the coherence of the BEC is
maintained. This is the first criteria for superfluidity. The second necessary criteria is that vc cannot be zero,
so we need to have a condensate that transports the charge. A non-interacting (pure) Bose gas like we saw in
the previous section has vc = 0, so it cannot be a superfluid. A weakly interacting Bose gas has vc 6= 0 and it
is a good representation of a superfluid.

As we are going to see in the next section in the case of the weakly interacting BEC because of the spontaneous
breaking of the U(1) symmetry, a Goldstone mode appears, the phonon. This mode is gapless εp=0 = 0 and it
is an elementary excitation of the superfluid. Even for that mode, the critical velocity is not zero, so there is
some cost for producing the gapless excitation. For this weakly interacting Bose gas, the critical velocity is the
fluid sound speed, and Landau’s criteria for superfluidity becomes:

vs < vc = cs . (19)

In summary, given that vc is nonzero, and that we have a condensate (by construction) in this system, if v < vc,
we can say that there is superfluidity. This results, however, is only valid for zero temperature.

Landau also developed the theory for a superfluid at finite temperature, the two fluid model. At finite
temperatures the fluid has two components: the superfluid component that flows without friction, and a normal



Ultra-light dark matter 19

fluid which describes the excitations. In this theory then there are two sounds speeds, for each degree of freedom.
In the case of weakly interacting Bose gas, the first sound is cs associated with the oscillation in density, and
the second sound is cs/

√
3 that corresponds to the speed of propagation of the temperature oscillations.

This phenomenological theory is still an important topic of research as a condition for superfluidity. From
simulations to experiments it is interesting to ask if the Landau criteria is fulfilled as a criteria for supefluidity.
This criteria seems to be valid only in the regime of linear perturbations. This is the case since in Landau’s
theory the superfluid dissipates only into elementary excitations. However, we know that it is also possible to
exist quantum vortices, topological defects present in rotating superfluids. This phenomenological theory does
not take that into account, which can change the critical velocity of the superfluid to smaller values, reaching
the dissipative regime of the superfluid before than if using Landau’s critical velocity (Ianeselli et al. 2006).

Landau criteria for superflduidity

Phenomenological conditions for superfluidity (at T = 0):

1. Existence of a condensate;
2. vc 6= 0 (Non-interacting Bose gas has vc = 0 - not a superfluid! Interaction is crucial for super-

fluidity.)
3. v < vc - system transports charge without dissipation and the coherence of the BEC is maintained.

vc = velocity above which excitations can leave the condensate (vc = cs - interacting BEC)

At finite temperatures, two fluid model: the superfluid component that flows without friction, and a
normal fluid which describes the excitations.

3.3 Weakly interacting Bose gas - superfluid

We now turn to the discussion of interacting systems. Inspired by Landau’s phenomenological theory, the weakly
interacting Bose gas was proposed as the simplest system to study superfluidity, and as a realistic model to
understand condensation. In this section we are going to model a superfluid by a Bose–Einstein condensate
that has self-interaction, and show that, although a BEC can be formed both in the case of the non-interacting
and interacting Bose gas, the presence of interaction is crucial for superfluidity (Pitaevskii and Stringari 2016;
Barenghi and Parker 2016; Rogel-Salazar et al. 2004).

We present here a microscopic description of superfluid which arises upon condensation. The microscopic
system where this happens is a weakly-interacting gas of bosonic particles. To describe this interacting gas, first
we need to understand how to describe the excitations in this system.

One of the conditions for condensation is that the gas is dilute. However, even in a dilute gas the interaction
can play an important role. The way we describe interactions or collisions in a Bose gas is somewhat different than
in a classical fluid. Since now we describe it using their wavefunction, we need to have a interatomic potential Vint

to enable these collisions. In a dilute system at low temperatures, three-body interactions are suppressed, so we
are going to describe this system with binary collisions. In such a system, the two-body collisions depend only on
one parameter a, the s-wave (or coherent) scattering length (Harko and Lake 2015), which is the zero energy limit
of the scattering amplitude a = limT→0 fscat. This is valid only for low energies when the other length scales of the
problem d� a. In this limit, the elastic scattering cross-section becomes constant σ = 8πa2, and the two-body
interatomic potential can be written as Vint(r−r′) = (4πa~2/m) δ(r−r′) ≡ g δ(r−r′), which is short-ranged and
present only when the atoms interact. The s-wave scattering length a can be positive or negative depending on
the system described, representing a repulsive or an attractive interaction. With this we can model the effective
interaction Hamiltonian as Ĥint =

∫
drdr′ Ψ̂ †(r)Ψ̂ †(r)Vint(r− r′) Ψ̂(r′)Ψ̂(r′) ≈

∫
d3r Ψ̂ †(r)Ψ̂ †(r)Ψ̂(r)Ψ̂(r), where

Ψ is the Bose operator.
The dynamics of this many-body interacting system is given by the second-quantized N -body Hamiltonian,

Ĥ =

∫
d3r Ψ̂ †(r)

[
−~2∇2

2m
+ Vtrap(r)

]
Ψ̂ +

g

2

∫
d3r Ψ̂ †(r)Ψ̂ †(r)Ψ̂(r)Ψ̂(r) , (20)

where the brackets is the single particle Hamiltonian, and Vtrap(r) is the trapping potential, an external po-
tential applied to the system (that in the next section could be the gravitational potential). In the Heisenberg
description, we can then write the Heisenberg equations of motion,

i~
∂Ψ̂(r, t)

∂t
= [Ψ̂(r, t), Ĥ] =

(
− ~2

2m
∇2 + Vtrap(r)

)
Ψ̂(r, t) + g Ψ̂ †(r, t)Ψ̂(r, t)Ψ̂(r, t) , (21)

with the brackets indicating the commutator. This is the Schrödinger equation for the Bose field operator Ψ̂(r, t).
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The Bose field operator Ψ̂ †(r) and Ψ̂(r) create and annihilate a particle at position r, and obeys the canonical
commutation relations with only non-zero commutator given by [Ψ̂(r), Ψ̂ †(r)] = δ(r−r′). The Bose field operator
describes a continuum spectrum of single particle position eigenstates, and can be re-written in the single-particle
basis as

Ψ̂ † =
∑
i

â†iφ
∗
i (r) , Ψ̂ =

∑
i

âiφi(r) , (22)

where φi is the states wavefunction, and the creation and annihilation operators, â†i and âi, create and annihilate
a particle from the state φi. They obey the Bose commutation relations13, with only non-zero component given
by [âi, â

†
j ] = δij .

Many-particle systems described by the Hamiltonian (20) are very difficult to be solved. With the exception
of a few simple models, in order to find solutions to this problem and be able to study its properties we need to
make simplifications. For that we use Bogoliubov’s prescription or mean-field approximation. For the general
case of a non-uniform gas, the mean-field approximation can be written, in the Heisenberg picture as,

Ψ̂(r, t) = ψ(r, t) + δΨ̂(r, t) , (24)

where ψ(r, t) ≡ 〈Ψ̂(r, t)〉 is classical field called the wavefunction of the condensate. The density of the condensate
is fixed by: n0 = |ψ(r, t)|2 = n. Like we described for Landau’s theory, δΨ̂(r, t) is a small perturbation of the
system with 〈δΨ̂(r, t)〉 = 0 and describes depletion of the condensate.

Effectively this approximation leads the many-body problem to be reduced to a single body problem by
describing the averaging the effects of all other particles. Given that the interactions are weak, and that the gas is
diluted, quantum fluctuations on the condensate are suppressed. The mean field approximation is valid for dilute
system with na3 � 1. When this conditions is not met there are deviations of the mean-field approximation. We
can treat these deviations in perturbation theory, where we invoke non-vanishing moments for the fluctuation
operator, like the Hartree–Fock–Bogoluibov, which considers a non-zero 〈δΨ̂〉, or the Hartree–Fock–Bogoluibov–
Popov, for terms up to second order in the perturbation.

With this approximation, we can write the generalized Gross–Pitaevskii (GP) equation:

i~
∂ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + Vtrap(r) + g |ψ(r, t)|2

)
ψ(r, t) .

Gross–Pitaevskii
equation

(25)

The GP equation is a non-linear Schrödinger equation, with non-linearity arising from the self-interaction term.
This equation describes the dynamics of the zero-temperature dilute weakly-interacting Bose system by allowing
us to determine the shape of the single particle wave function, the condensate.

We can study the case of stationary solutions. The stationary solution can be taken as the solution that
provides us with the condensate, the ground state wavefunction. The ground state is the lowest energy state
of a quantum mechanical system, with the excited states being the states with higher energy than the ground
state. The stationary states Ψ are the eigenfunctions of the Hamiltonian operator, with eigenvalues µ related
to the energy of the system, in a way that for the wavefunction we have

i~
∂Ψ

∂t
= ĤΨ = µΨ . (26)

With that we can write the stationary solution as,

ψ(r, t) = ψs(r)e−
i
~µt , (27)

where the eigenvalue of the Hamiltonian µ is also called the chemical potential, and φs is real field with∫
drψ2 = N0 = N . The Gross–Pitaevskii equation becomes:(

− ~2

2m
∇2 + Vtrap(r) + g |ψs(r)|2

)
ψs(r) = µψs(r) . (28)

In the Thomas-Fermi limit, which is the approximation where the interaction energy is bigger than the kinetic
energy for a large number of particles, the kinetic energy can be neglected so we have µψ = (g n+ Vtrap)ψ. As
a solution of this equation, we get that in the Thomas-Fermi limit,

n(r) = |ψ(r)|2 =

{
(µ− Vtrap(r))/g , for r where (µ− Vtrap(r))/g > 0 ,
0 , otherwise .

(29)

13 In terms of the creation and annihilation operator, the Hamiltonian of the many-body system is given by,

Ĥ =
∑
ij

Hsp
ij â
†
i âj +

1

2

∑
ijkm

〈ij|V̂ |km〉â†i â
†
j âkâm , (23)

where 〈ij|V̂ |km〉 denotes the matrix element for the interaction, and Hsp
ij =

∫
d3rΦ̃∗i (r)ĤspΦ̃j(r), where Φ̃j is the states wavefunc-

tions.
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Fluid description

We can decompose the complex macroscopic condensate wavefunction into,

ψ(r, t) = |ψ(r, t)| eiθ(r,t) , (30)

where, as we saw above , ψ is normalized to the total number of particles, |ψ(r, t)| =
√
n(r, t) =

√
ρ(r, t)/m,

and θ(r, t) is the phase distribution. Inserting this into the GP equation we get two equations. We make the
following redefinition

v(r, t) ≡ ~
m
∇θ(r, t) . (31)

This, together with (30) are called Madelung transformation. With those new variables, the GP equation results
in two equations, the Madelung equations (Madelung 1927):

∂ρ

∂t
+∇ · (ρv) = 0 ,

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇ (Pint + PQP)− n∇Vtrap .

(32)

(33)

They are a representation of the GP equation into “hydrodynamical” equations since they have a similar form as
the continuity equation and Euler equation for a perfect fluid. However, the second Madelung equation describes
a fluid with a potential flow, given the definition of the velocity, with zero vorticity ∇× v = 0. This corresponds
to the main characteristic of the superfluid that it flows without friction, has irrotational flow. This equation
also differs from the perfect fluid Euler equation by the presence of the quantum pressure term.

The second Madelung equation, the Euler-like equation, reveals more interesting properties of the superfluid.
This equation has two pressure terms, Pint and PQP that are respectively the pressure term, and the quantum
pressure:

Pint = K ρ(j+1)/j
∣∣∣
j=1

=
g

2
n2 =

g

2m2
ρ2 ,

∇PQP = −n∇Q = −n∇
[

~2

2m2

∇2
√
n√
n

]
. (34)

The pressure term comes from the self-interaction which gives a polytropic type of pressure. For the two-body
interaction, which is the case we show here, j = 1. If we have a three-body interaction, for example, the pressure
would have polytropic index j = 1/2, giving Pint ∝ ρ3. The constant K depends on the interaction constant.
The quantum pressure is defined in terms of the quantum potential Q = −(~2/2m)∇2

√
n/
√
n (see definition

bellow).

Quantum pressure: Quantum pressure (QP) is the name given to the term14

∇PQP = −n∇
[
~2

2m

∇2
√
n√
n

]
, Pij,QP = −

(
~

2m

)2

ρ ∂i∂j ln ρ , (35)

where Pij,QP is the quantum pressure tensor. Together with the second term on the left hand side of
equation (33) this term comes from the spatial part of the kinetic term. However, those two components
are very different. The classical component describes the kinetic pressure due to the motion of the
particle. The quantum pressure comes from the quantum part of the kinetic term that arises due to
the Heisenberg uncertainty principle or can be seen as the curvature of the amplitude of the wave
function. This is an additional force term that appear in the Madelung equation due to the zero point
motion of particles. In the mean field approximation, this term is still present, given the classical wave
function describing the system, so the term quantum is also misleading in this context. This term is
repulsive and counter-acts attraction from a potential or attractive interaction, supporting the system
against collapse. With that, the system cannot have vanishing size. This term modifies the dispersion
relations of the excitations of the condensate and it is important at small scales, for scales smaller than
the healing length. This term is negligible for large scales, the Thomas-Fermi approximation, and for a
uniform superfluid, since n = const..

Healing length: defined as the length for which Pint = PPQ, given by,

ξ =
~√

2mgn
. (36)
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It is the length for which the interactions ”heal” (coarse-grain) any density of phase perturbations in the
condensate.

Condensate solution

Having established how we describe the weakly interacting system in the mean-field approximation, we can
now describe what is the ground state, the condensate. We can solve analytically the GP equation for a few
simple cases and obtain the condensate solution as for the cases with no interactions, in harmonic potential,
and other simple systems (Barenghi and Parker 2016). We are going to present some interesting cases here.

In the case of a uniform gas, the wavefunction Φ0(r) =
√
Nφ0/

√
V describes the condensate formed, while

the remaining functions form a complete set of functions orthogonal to the condensate.
Solitons - Solitons are a localized solution of the one-dimensional GP equation with Vtrap = 0, which is

integrable in this limit. They are also called solitary waves, and are solutions described by a permanent and lo-
calized wave, that maintains its shape and velocity upon collisions. They are obtained when the dispersion term,
the kinetic spatial term, and the non-linear term from the interaction cancel out. If the interaction is repulsive
(g > 0), a dark soliton is formed,which is given by the solution ψd(x) = ψ0 tanh(x/

√
2 ξ), where ψ0 = limx→∞ ψ.

A bright soliton is the solution for attractive interactions (g < 0), with ψb(x) = ψ0e
−iµt/~ cosh(

√
2m|µ|/~x)−1.

They are called dark and bright since they represent a decrease and a concentration of condensate, respectively.

Collective excitations, dispersion relation and sound speed

The excitations in the superfluid which represent perturbations of the condensate, are an important part of
this system. They represent sound waves, called the phonons that propagate through the condensate. We are
going to show how they arise.

Here we are going to work in the case Vtrap = 0, for simplicity. The case where a trapping potential is
present, like for example a condensate in the presence of a gravitational potential, is studied in Section 4.1.
For a homogeneous condensate, to study the perturbations around the condensate, we perturb the classical
wavefunction ψ(r, t),

ψ(x, t) = ψ0 + δψ(1) + δψ(2) + · · · , (37)

where we assumed that the motion is only in the x-directions without lost of generalization. The perturbations
are small and δψ(i) indicate the ith order in perturbation. To linear order, we can re-write the linearized GP
equation: i~∂tδψ(1) = −(~2/2m)∂2

xδψ
(1) + µ(δψ(1) + δψ∗ (1)). We make an ansatz for the solution as travelling

waves, δψ(1) = Aei(kx−ωkt) + B e−i(kx−ωkt). The parameters A, B are determined by the initial conditions.
Substituting this ansatz into the linearized GP equation, we can see that the dispersion relation is given by,

ω2
k = c2sk

2 +
~2

(2m)2
k4 , (38)

where the sound speed is defined as the term coming from the linear part of the dispersion relation,

c2s =
g n0

m
. (39)

The sound speed appears because of the presence of the interaction, therefore since for a superfluid the presence
of an interaction is crucial, we can say that a superfluid is a fluid that has a sound speed. With this we can
easily see the definition and properties of a superfluid.

Superfluid: In the presence of interactions, a sound speed is present which determines the behaviour of the
excitations on large scales.
- For large wavelengths (small k), the higher k terms do not contribute and the dispersion relation is given
by:

ωk = csk , (40)

which is the dispersion relation of a sound wave. The superfluid is characterized by excitations that propagate
as waves, the phonons. Because of this property phonons can mediate a long range forces (F ∼ 1/r2). This
long-range force is the responsible for the effective dynamics of a superfluid: flowing without friction. We
are going to see later (in the field theory description) that this gapless mode can also be viewed as the

14 One can notice that the form of the quantum potential coming from the Madelung equations, and consequently the quantum
pressure tensor, are very similar to the Bohm quantum potential (Bohm 1952a,b). Some authors point that Bohm rediscovered the
quantum pressure in his new interpretation of quantum mechanics. However, some authors claim this equivalence is not so clear.
Some authors also claim that since the quantum pressure tensor has non-diagonal components, and it is not isotropic, so it cannot
be called pressure (Hui et al. 2020).
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Nambu-Goldstone modes coming from the spontaneous symmetry breaking of the U(1) symmetry of the
system caused by the formation of the BEC.
This limit where the quantum pressure term can be ignored, or more specifically when Pint � PQP, is the
Thomas-Fermi approximation we saw above, and can alternatively be defined by wavelengths bigger than
the healing length.
This is the case for a repulsive interaction (g > 0). The situation is different for an attractive interaction
(g < 0), where wk is imaginary and the solutions is unstable given by exponentially growing or decaying
functions. This means that it is not possible to form a stable condensate in these cases.
- For small wavelengths (large k), the quantum pressure term dominates, and the dispersion relation is given
by ωk = ~k2/2m, which describes a free particle. In this limit, the system stops exhibiting superfluidity.
In general, for intermediary frequencies, the full dispersion relation (38) does not propagate as a wave and
shows two degrees of freedom: a gapless mode (the phonon), that propagates as a wave, and a massive mode,
related to particle creation. We are going to discuss these again in the field theory section.

No interactions - BEC: In the limit where g → 0, the BEC stops exhibiting superfluidity. The phonon
becomes gapped, the dispersion relation is given by: ωk = ~k2/2m, which is the dispersion relation of a free
particle. Since ω2

k > 0 in this case, the solution of the linearized GP equation (without a external potential)
is a stable oscillatory solution.

We showed above that the superfluid can decay into collective elementary excitation, the long-wavelength
sound-wave quanta, the phonon. These are excitations with linear dispersion relation that behave as periodic
fluctuations in density in the superfluid. When studying linear perturbations around a classical condensate
background, only the phonon excitation is expected. However, a superfluid can also deplete into other excitations
called rotons and maxons. The linear part of the dispersion relation is only a part of the dispersion relation
at small momenta. For higher momenta, the dispersion relation presents a maximum and then a minimum.
Near the maximum we have the maxons excitations, and near the minimum, for even higher momenta, we have
the roton excitations. So, phonons, rotons and maxons are excitations described by different parts of the same
dispersion relation. And lastly, for a rotating superfluid, there is also the vortex nucleation of the condensate,
as we will see in Section 3.5.

U(1) symmetry group: The unitary group of degree n = 1 is the group associated with n × n unitary
matrices (U∗U = UU∗ = 1) under matrix multiplication, U = eiα, with α the parameter of the group.
For n = 1, this is the unitary transformations complex numbers, which corresponds to phase rotations.
The U(1) group is isomorphic15 to the SO(2), the group of the 2 × 2 orthogonal rotations in R2 with
unit determinant. The U(1) symmetry can be global, when it acts in the same way in all points in
space-time, or local, acts differently at each place in space and time.

Noether’s theorem: One of the most important results theoretical physics, Noether’s theorem definition
can be found in basically every textbook in field theory and even classical mechanics. The theorem
states that for each continuous symmetry of a action there is an associated conserved current jν(x, t),
∂νj

ν(x, t) = 0 . This has profound implications since the conservation laws that describe the dynamics
of a systems are then associated with the symmetries present in the problem.

We can illustrate this for a system with the global U(1) symmetry that, according to Noether’s theorem
has a conserved particle number density16. Consider a complex scalar field (Ψ(x, t)) theory with action:

S =

∫
d4xL =

∫
d4x [(∂µΨ)∗(∂µΨ) + V (x)Ψ∗Ψ ] , (41)

where V (x) is a potential. On top of being invariant under Lorentz transformations, this system has
U(1) symmetry, with the action invariant under continuous rotations of the phase of the complex scalar
field: Ψ → eiαΨ (and c.c.). Since this is a global symmetry, α is independent of (x, t). With that, we can
evaluate the Noether current and charge of this system:

jν = i(Ψ †∂νΨ − Ψ∂νΨ †) , Q =

∫
d3x j0 , (42)

which are conserved: ∂νj
ν = 0 and dQ/dt = 0. From jν = (mn, j), the conserved charge can be written

in terms of the local density of Q, Q =
∫
d3x ρ(x, t), and the conserved current implies a continuity

equation for ρ. In this way, Q ∝ Ψ †Ψ , which implies the conservation of the norm and it is associated
with number conservation.



24 Elisa G. M. Ferreira

Some comments are in order. When defining ψ as the condensate wavefunction, this quantity is actually a
mean-field value of the wavefunction, the degree of freedom that defines the condensate. This description of
averaging selecting the condensate is consistent with the theory of critical phenomena, like phase transitions.
This Bose system can be seen as a system with spontaneous breaking of a symmetry of the description. In our
case the U(1) symmetry which is the symmetry of the Hamiltonian. This is analogous to the the spontaneous
symmetry breaking in a ferromagnet. The difference is that, since we have a Bose system, the idea of spontaneous
symmetry breaking to the thermodynamical limit of a finite size Bose gas defines the number of particles of
the system, and this is only consistent with the picture of having a condensate that can change the number of
particles in the ground state, if the number of particles is conserved.

We can also understand this argument for the symmetry breaking of the system by analysing another
approach to the weakly interacting system initially developed by (Penrose and Onsager 1956), and (Beliaev
1958). In this approach the condensate wavefunction is identified, using the density matrix ρ̄(r, r′) = 〈Ψ̂(r′)Ψ̂(r)〉,
to the number density of particles n(r) = ρ̄(r, r) =

∑
i ni|φ(r)|2, where we are working in the stationary case.

The formation of a BEC, which means that the ground state has a macroscopic occupation, leads to the
factorization N = n0 +

∑
i 6=0 ni, which means ρ̄(r, r′) = Φ0(r′)Φ0(r) +

∑
i6=0 niφ

∗
i (r
′)φi(r). The field operator

then can be factorized in the presence of a condensate into Ψ̂(r) = Φ0(r) + δΦ̂(r), with 〈δΨ̂(r)〉 = 0. This means
when a condensate form,

〈Ψ̂(r)〉 = Φ0(r) 6= 0 . (43)

A state that has conserved particle number has 〈Ψ̂〉 = 0. So this condition above is seen as describing a symmetry
breaking, more specifically Bose symmetry breaking, and the consequence is a system where particle number
is not conserved in the condensate. In the absence of a condensate this goes back to the particle conserving
condition:

Φ0

{
= 0 , for T > Tc ,
6= 0 for T < Tc .

(44)

This suggests that condensation comes from a spontaneous symmetry breaking theory.

With that, the interacting condensate system above can be understood as a particle conserving system of
bosons with U(1) symmetry, described by the classical field ψ, the wavefunction of the condensate, where the
formation of a Bose–Einstein condensate is a phase transition, coming from a spontaneous breaking of the
symmetry (that can be seen as spontaneous coherence). This description of the condensate makes us see a
parallel with the formalism used in field theory.

3.3.1 Field theory description

Given the suggestion that we can describe condensation as spontaneous symmetry breaking process, we turn now
to the description of this system using a field theory language. The methods from field theory are very appropriate
to describe this type of system where spontaneous symmetry breaking is present. Given the description we had
above for the superfluid and the properties of this system, we represent this system as a massive complex scalar
field17 with self-interactions with a global U(1) symmetry that is spontaneously broken by the presence of the
ground state, the condensate, with superfluidity arising upon condensation. We are going to work here, in order
to best illustrate this description, in the homogeneous case, where there is no trapping or external potential
applied to the system.

Given that, we describe this system by the Lagrangian density for a two-body interaction,

L = (∂µΨ)∗(∂µΨ)−m2Ψ∗Ψ − g

2
(Ψ∗Ψ)2 (45)

where we consider g > 0 in order to get a stable condensate with long range coherence, as discussed above.
As we saw above, this system has a U(1) global symmetry, which means that it is invariant under continuous
rotations of the phase of the complex scalar field,

Ψ → Ψeiα , Ψ∗ → Ψe−iα , (46)

16 Isomorphism is a one on one mapping between the elements of groups preserving its group operations. In the case of U(1) and

SO(2), the isomorphism takes a complex number of unit norm into a rotation, eiθ 7→
(

cos θ − sin θ
sin θ cos θ

)
, where the rotation angle is

the argument of z.
16 For a more general derivation of Noether’s theorem in field theory for any continuous symmetry and the connection with the

generators of the symmetry group see (Zee 2003)
17 We have used here a complex scalar field that has a continuous symmetry since, as we saw before according to Noether’s

theorem, this system has a conserved charge. The U(1) symmetry gives us a system with conserved particle number. For this reason
it is essential to use a complex scalar field.
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where α is a constant18. The equation of motion is given by,

∂µ∂µΨ +m2 Ψ + g|Ψ |2Ψ = 0 . (47)

In order to describe the condensate, like we did previously, we separate the condensate contribution to the
perturbations, and assume the mean-field approximation,

Ψ(x, t) = ψ(x, t) + δΨ(x, t) , (48)

where ψ(x, t) is the background that gives the condensate field, and δΨ(x, t) are the excitations of the condensate
that are considered small with respect to the background solution.

As we saw in (27), the stationary solution determines the ground state of the system. Using that, the
condensate wavefunction can be written as

ψ = v eiµt , (49)

where θbg = µt is the phase of the ground state where µ is the chemical potential19. This is the background
solution for the the equation of motion (47) as long as,

µ2 = m2 + g v2 . (50)

When we have a spontaneous symmetry breaking, only the ground state, the state that broke the sym-
metry, is not invariant under U(1) anymore. This means that we still have a conserved current given by
jν = i(Ψ †∂νΨ − Ψ∂νΨ †), as we saw above in the definition of SSB. Using the equations of motion one can
see that this current is conserved. For the ground state (49), this current gives the number density: n = 2µv2. In
the field theory description the conservation of the norm (

∫
|Ψ |2), related to the number density in the conden-

sate and conservation of the number of particles in the condensate seen in the quantum mechanical approach
above, is interpreted as a consequence of the global symmetry of the system which leads to a conserved Noether
charge, Q =

∫
j0 ∝

∫
n ∝

∫
|Ψ |2 (conservation of the number density of field quanta).

Spontaneous symmetry breaking (SSB): SSB is the phenomenon where the state of the theory is not
invariant (not symmetric) under the symmetry transformations (U) of the Hamiltonian (or action)
that describes the system. This stable state |ψ〉 spontaneously broke the symmetry of the system. This
mechanism offers an explanation for why there exist stable states, like a condensate, that do not respect
the symmetries of a system. This allow for the existence of different symmetry related state U |ψ〉, of
same energy but different phases defining a set of symmetry-broken states. To distinguish them, or their
phases, we have the order parameter of the system, defined as O = [Q, Φ], where a state breaks a
symmetry U = eiαQ if Φ exists. The order parameter can be used to identify if a symmetry was broken
〈O〉 6= 0, where the system is said to have long range order, given by its two-point function (C(x) being
proportional to a constant. For unbroken systems, 〈O〉 = 0, where the C(x, x′) ∝ exp(−|x− x′|/l). The
coherent length, l, is infinite when there is long range order 20.

This is the background solution corresponding to the condensate. This ground state is responsible for spon-
taneously breaking the U(1) global symmetry. And we can see that explicitly. Since this solution represents the
ground state, we can compute the energy functional for this system,

E =

∫
d3x U =

∫
d3x (∂0Ψ∂

0Ψ + ∂iΨ∂
iΨ + Veff ) , (51)

where Veff = m2Ψ∗Ψ + gΨ∗Ψ . The ground state is given by the stationary, minimum energy state. This can
be found by finding the minimum of the energy (51), which amounts to finding the minimum of the potential
energy. The set of solutions for the minimum of this potential energy is:{

v0, s = 0 , for m2 > 0 , Symmetry restaured

v0, ssb = ±
√
|m2|
g , for m2 < 0 , Symmetry broken− condensate .

(52)

18 It is equivalent to re-write this, in a language of SO(2) symmetry, where the complex field can be written as Ψ = (1/
√

2)(Ψ1 +

iΨ2), where the system as an invariance under rotations:

{
Ψ1 → cosαΨ1 − sinαΨ2

Ψ2 → sinαΨ1 + cosαΨ2
.

19 We identified the chemical potential in our superfluid as the time derivative of the ground state phase, µ = ∂tθbg. This is only
valid if ∂iθbg = 0, which is the chemical potential in the frame where the superfluid moves with velocity v. If this is not true, the

chemical potential is given by µ̄ =
√
∂νθbg∂νθbg, which is the chemical potential in the rest frame of the fluid.

20 For a very complete and extensive review on SSB, see (Beekman et al. 2019).
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Fig. 7 Potential of the weakly self-interacting system. Left panel: Potential of the symmetry restored phase, m2 > 0 which has
a minimum at ψs = 0. This ground state is symmetric, respects the symmetry of the system. Right panel: Symmetry breaking
potential, for m2 < 0. This phase has a degenerate minima not invariant under the symmetry of the system. It represents the
condensate state.

The value of the minima v0, ssb = ±m/√g are called vacuum expectation value and are the value that the field
assumes at the ground sate, apart from a phase. As we can see from on the left panel of Fig. 7, the symmetry
restored phase when m2 > 0 has a well defined minimum at v0, s = 0, and this is the normal phase, with no
condensation. This ground state ψs = 0 is preserved under the symmetry of the system (U(1) symmetry), the
rotations of the phase of the complex field.

The symmetry breaking phase when m2 < 0, there is a continuous set of minima with the ground state given
by ψssb = v0, ssbe

iα, corresponding to all the possible phases in the circle α ∈ [0, 2π), as seen in the right panel
of Fig. 7. All of these classical backgrounds are not invariant under U(1) symmetry, the symmetry of the system,
which means that φi, ssb → φj, ssb = v0, ssbe

iα 6= φi, ssb. In this way, we say that the symmetry is spontaneously
broken by this condensate ground state. From the SSB we can see that the condensate has long-range order,
with the field having the role of the order parameter of the system.

Excitations

We consider now fluctuations around the classical condensate configuration in order to study the spectrum
of this system. Considering small fluctuations means perturbing each degree of freedom of the field around the
condensate (48). This is equivalent, in the polar notation to:

ψ(x, t) = (v + ρ) ei(µt+π) , (54)

where ρ(x, t) can be interpreted as a perturbation in the radial direction, and π(x, t) a perturbation in the
angular/phase direction. Plugging this into the Lagrangian, we have,

L = −(∂µρ)2 + (v + ρ)2
[
g v2 + 2µπ̇ + π̇2 − (∂iπ)2

]
− g

2
(v + ρ)4 . (55)

With this expansion is already easy to see that ρ has a mass term (the term accompanying the ρ2 term), so the
perturbation in the radial direction is massive. The perturbation in the phase has no mass term and it is going
to be massless. This massless excitation was already expected from the Goldstone theorem (see below), where
a SSB leads to the appearance of a massless excitation, the Nambu-Goldstone (NG) boson π. In the context of
a superfluid this gapless excitation is the phonon.

For low energy theories, the phonon is the only degree of freedom that is excited in the theory, as the
massive mode can be integrated out. Therefore, at low energies a superfluid is completely described by the
phonon excitations.

Low energies here mean energies lower than the mass gap of the massive mode ρ. We are going to work on
this limit here to obtain the spectrum of this NG boson. In this limit, the kinetic term of ρ can be neglected
and the equation of motion becomes:

g(v + ρ)2 = g v2 + 2µπ̇ + π̇2 − (∂jπ)2 ≡ X . (56)

20 An alternative way of writing this Lagrangian that leave explicitly the spontaneous breaking of the symmetry by the finite
charge:

L = |(∂µ − iµ)Ψ |2 −m2|Ψ |2 − g|Ψ |4 . (53)

This is equivalent to the usual way we introduce the chemical potential in the Hamiltonian: H−µN , where N = j0 is the conserved
charge. For this modified Lagrangian, the condensate would have trivial phase θbg = 0. This is equivalent to what we did in the text
where the Lagrangian had the canonical kinetic term, but the phase of the condensate had a time dependency with the chemical
potential θbg = µt.
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Using this we can rewrite the on-shell Lagrangian in terms of X as,

L =
X2

2g
=

1

2g

[
g v2 + 2µπ̇ + π̇2 − (∂jπ)2

]2
. (57)

This Lagrangian depends only on the phonon π, as ρ was integrated out, and is invariant under shift symmetry,
π → π + c, inherited from the U(1) symmetry of the complex scalar field. This is the effective Lagrangian
at leading order in derivative expansion for the phonon. To obtain the dispersion relation we can expand this
Lagrangian, using πc = µπ,

L =
1

2g

1

4µ2

{
g2n4 + 4gnµπ̇c +

(
ng

µ
+ 4µ2

)
π̇2

c −
ng

µ
(∂jπc)2 + 2

[
π̇3

c − π̇c(∂jπc)2
]

+
1

4µ2

[
π̇2

c − (∂jπc)2
]2}

,

(58)

where we used that n = 2µv2. Taking the Fourier transform of the field, we compute the equation of motion
and can see that the dispersion relation of the phonon is given by,

ω2
k =

g n

µ
k2 +

1

(2µ)2
k4 = c2sk

2 +
1

(2µ)2
k4 , (59)

where cs is the sound speed of the superfluid. This expression shows us the general behaviour we already seen
in the excitations calculated in the QM approach. For long wavelengths (small k), the higher order term in k
is suppressed, and the dispersion relation is w2

k, long = csk
2, which is the dispersion relation characteristic of a

sound wave. Therefore, the phonon propagates as a wave with sound speed cs in the long wavelength regime.
The second term of the dispersion relation is characteristic of a massive particle. This means that for short

wavelengths, the system behaves as a system of normal particles propagating, and not a superfluid.
We can re-write these expressions in the non-relativistic (NR) regime, which is the regime we are interested

in comparing to the previous approach (and also the limit where we describe, in the next section, the behaviour
of DM in galaxies). In this limit, g v2 � m2, which implies µ2 ≈ m2. The dispersion relation in this case is
given by

w2
k,NR = c2sk

2 +
1

4m2
k4 , with c2s =

g n

m
, (60)

which is equivalent to the one found in (38).
In the absence of interactions, we recover the ideal Bose gas from Sect. 3.1, with background solution is given

by Ψideal = veimt, and dispersion relation of a massive particle w2
k = (1/4m2)k4, showing again that although

this system condenses in to a BEC, in the absence of interactions there is no superfluidity. It is easy to see from
(58) that in the relativistic regime, g v2 � m2, c2s = 1/3.

In this way we showed that the field theory description of the superfluid is very good to describe the general
properties of the superfluid. In order to properly compare with the results obtained above in the QM approach,
we are going to show that in the non-relativistic limit, the field theory description gives us the GP and Madelung
equations obtained above.

Before doing that, one comment is in order. In (57), we showed that in the low energy regime we can re-
write the microscopic theory of a superfluid as an effective theory only of the phonon with a non-canonical
kinetic term. We did this here in the case of a weakly self interacting system with two body interaction, but
in section 3.4 we are going to extend this idea to general superfluid systems and show the construction of the
EFT of superfluids.

Goldstone theorem: The Goldstone theorem (Goldstone 1961; Goldstone et al. 1962; Nambu and Jona-
Lasinio 1961) or Nambu–Goldstone theorem, states when a spontaneous symmetry breaking occurs a
mode with energy that vanishes as k → 0 is present in the spectrum of excitations of the system.
This mode is called Nambu–Goldstone (NG) boson and is a massless particle, in the case of relativistic
systems or collective excitations with zero energy gap for non-relativistic systems21. When a symmetry
is spontaneously broken, the Noether theorem still applies so there is still conserved currents. The stable
state responsible for the SSB is not invariant under this conserved charge, Q|ψ〉 6= 0 (or 〈O〉 6= 0). This
condition implies that there must be a state, the NG mode, with Ek → 0 as k → 0, whose quanta is a
massless boson. The NG boson still exists if the symmetry is not exact or broken by an external potential
µ, but in this case the mode has a gap µ at k → 0. For ordinary NG bosons (type A), the number of
NG bosons created is equal to the number of broken symmetry generators Q, nBG.
The Goldstone theorem described here is valid for a system that is invariant under Lorentz transforma-
tion, with the appearance of nBG NB bosons. However, SSB is an important phenomena in many systems
that are not Lorentz invariant, like the BEC or supefluid, with a number of bosons that will appear in the
theory, nNG, called Nambu–Goldstone (NG) bosons, which might not be equal to the number of broken
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generators, like in the Lorentz invariant case. A generalization of the Goldstone theorem, which includes
systems that do not have Lorentz symmetry, exists and can be found in (Watanabe and Brauner 2011;
Watanabe and Murayama 2012). In these works they classify and generalize the Nambu–Goldstone the-
orem for any symmetry, including non-relativistic systems invariant under Galilean symmetry, showing
how to compute the number of NG bosons created by the breaking of such symmetry.

Recovering the other approaches: We want to show that we can recover the GP theory presented in the previous
subsection, and emphasize that the field theory description is compatible to describe the superfluid. The field
theory presented above is a fully relativistic theory, which means that the action is invariant under Lorentz
transformations on top of the global U(1). However, GP description shown above is non-relativistic. Therefore,
in order recover the GP and Madelung equations we need to take the non-relativistic limit of the relativistic
field theory above22.

Starting from our field theory for the weakly interacting bosons (45), we take the non-relativistic limit of
the Lagrangian. We do that by talking the limit c→∞ and assume that in this limit the field has a very fast
phase rotation in time, which allows us to rewrite the fields as,

Ψ(x, t) =
1

2m
ψ(x, t)e−imt . (61)

With that, the Lagrangian can be written as:

L =
i

2

(
ψ̇ψ∗ − ψψ̇∗

)
− 1

2m
|∇ψ|2 − g

16m2
(ψ∗ψ)2 . (62)

From this non-relativistic Lagrangian we can evaluate the equation of motion for the scalar field ψ,

iψ̇ =

(
− 1

2m
∇2 +

g

8m2
|ψ|2

)
ψ , (63)

which is exactly the Gross–Piatevskii equation like shown above, in the absence of a trapping/external potential.

From that, we can also derive the Madelung hydrodynamical equations. If we make the following substitution:

ψ ≡
√
ρ/meiθ , v ≡ 1

m
∇θ . (64)

The vorticity of the superfluid is zero and the momentum density has a non-zero curl. Plugging this in the
equations of motion we recover the Madelung equations (32) and (33) in the absence of an external potential.
This shows again that we can recover the equations that describe the interacting BEC using the field theory
approach.

In this section we showed how to describe a weakly interacting BEC. We showed the standard treatment of the
theory, where the many-body quantum system is described by the GP equation. We showed that condensation
can be thought as a spontaneous symmetry breaking process and showed that the system can be described in
a equivalent way using the field theory approach. We specialized in both cases in the mean-field theory, which
is valid for dilute systems, and simplifies the significantly the study of the system.

It is important to comment on the validity of this theory and the approximations made. The theory presented
above is only valid for zero temperatures and in the mean-field approximation, that holds for na3 � 1, where
we can describe the condensate as a classical wavefunction and the limit where quantum corrections are not
important. As we cited above, there are correction to the mean field and other approximations where one can
study this model (see (Pitaevskii and Stringari 2016) for some examples). For finite temperature, one has to
describe the superfluid as a two-fluid model.

In the cases we are going to study, we will extend a bit the validity of the zero temperature description, as
a first approximation, since in galaxies the temperature is obviously not zero. However, since the occupation
number will be very high in our problem, the classical description is safe.

21 Some translational symmetry needs to be maintained in the system, like Lorentz symmetry for relativistic systems, so that
momentum is still a well defined quantum number.
22 One can also already start from a non-relativistic action for a field, called Schrödinger field, which directly yields the Schrödinger

equation. See (Beekman et al. 2019) for this derivation.
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Two fluid model
The description presented above for the superfluid is valid for a zero temperature dilute weakly interacting

Bose gas. However, as already described in Landau’s phenomenological theory, for finite temperature system
the superfluid has to be described as a two-fluid model: a mixture of a superfluid and a normal fluid. As we
saw previously in this description, for T < Tc, the fluid is a mixture of normal and superfluid with most of the
fluid in the superfluid phase, while for temperatures higher than Tc, the coherence of the superfluid is broken
and the fluid is mostly in the normal phase.

Connecting Landau’s theory and the microscopic description of a superfluid by a weakly interacting theory, a
two-fluid relativistic theory of superfluid was developed. This can be linked to the non-relativistic one described
above, and a ”hydrodynamical” and field theory approaches are developed. We are not going to describe this in
details in this review, since this is not used to describe the current ULDM models in the literature. However, the
two-fluid description should be used for finite temperature systems to describe a superfluid and we believe it is
important to describe realistic DM superfluid models. For a review of the two-field model, see (Schmitt 2015).
In Sect. 4, we present one work where the two-fluid formalism is used to describe the self-interacting BEC DM.

The weakly interacting Bose system studied in this section is the prototypical description of a BEC system
that presents superfluidity. It is a microscopical description that shows the behaviour of the condensate and its
excitations. But this description is limited and cannot be used to describe all the models of possible superfluids
and realistic experimental systems. The interesting point is that this theory can be recast as a spontaneous
symmetry breaking theory of the U(1) symmetry of the many-body system. BEC and superfluidity are a
consequence solely of the spontaneous symmetry breaking, independent on the specific model chosen. Therefore,
this hints us to describing these symmetry breaking systems using the effective field theory approach, where the
Lagrangian of the system is described by symmetry alone. The hope is to be able to describe more complicated
superfluid systems. We are going to describe this approach then in the next subsection.

3.4 Effective field theory of a superfluid

We described in the previous section the construction of a microscopic effective theory for the weakly interacting
BEC that can be used to describe superfluids. This description is based on London’s idea (London 1938), that
has its roots in the superfluid/superconductor hydrodynamics, that the BEC can be described by a theory with
spontaneous symmetry breaking caused be the condensate, with superfluidity arising upon condensation and
being described by the Goldstone boson, the phonon, at low energies. We saw that we can write an effective
Lagrangian for the phonon that describes the behaviour of the superfluid, matching many observations, in the
low energy and momentum regimes.

This procedure shows us that we can describe the hydrodynamical degrees of freedom of a theory by the
Goldstone modes created by the SSB of a symmetry, the global U(1) symmetry in our case. This is more
general than the simple weakly interacting two-body interaction case showed above. This is already the case
of hydrodynamics that describes macroscopically the behaviour of low energy variables and interactions of
system given a symmetry, coarse-graining over the smallest scales. This is the perfect playground for the use of
effective field theories (EFT), and EFT techniques are very appropriate for this task. An EFT describes the low
energy (long distances) behaviour of a system, without having to refer to its underlying microscopic theory, by
parametrizing our ignorance of those short scales.

The idea is to use EFT methods in order to describe the dynamics of a superfluid. This was developed in
(Son 2002; Dubovsky et al. 2006, 2012; Son and Wingate 2006), where they develop the general formalism to
describe fluid hydrodynamics without dissipation as a EFT. In this approach the Lagrangian that describes the
system is constrained by symmetry alone23. This approach is very powerful since not only can be applied to
many different systems, but describes the system without the need of its microscopic understanding. It is also
very powerful since it is an expansion over momentum. At leading order in the expansion, we describe the low
energy theory. But this description allows us to go beyond leading order in the long-wavelength expansion.

In our case, we want to construct the EFT that reproduces, in the long wavelength regime (low energies),
the superfluid hydrodynamics, as presented above. This theory is a theory of the phonon, which is the only
degree of freedom that is excited at low energies. This is the Goldstone mode produced by the SSB of the U(1)
global symmetry by the ground state. We are going to work here in the non-relativistic regime, but one can see
the references above for the relativistic case. Restricting to the non-relativistic regime does not imply any loss
of generality of the argument, with the system only subjected to different symmetries than the relativistic case.

23 There are many other references that also develop EFTs for different condensed matter systems and under different conditions,
as it can be seen in these references (Zakharov et al. 1992a; Burgess 2000; Hofmann 1999), including discussions on dissipation,
generalizations and modelling the UV physics that affects the EFT. This is not an extensive list, but showing just some examples
of these constructions. For an EFT of pions, one can check the following references (Gell-Mann 1962; Weinberg 1966; Gell-Mann
et al. 1968; Weinberg 1979, 2009), as some examples.
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Inheriting the knowledge of a superfluid from previous sections, at low energies, the only dynamical degree
of freedom that describes a superfluid is the phase of the condensate, the phonon. Therefore, in the non-
relativistic regime, we need to construct the EFT of this phase π. The superfluid is described by a theory where
the symmetry is spontaneously broken by the ground state,

θ = µt− π . (65)

The theory that is described by this phase Leff(θ) is invariant under shift-symmetry θ → θ+c which is inherited
from the U(1) symmetry of the complex scalar field.

EFT states that to construct the effective Lagrangian for the phonon, we have to write all the terms that
are compatible with the symmetries of the problem. This system has shift symmetry and Galilean symmetry.
For the shift symmetry in order for the Lagrangian to be invariant under this symmetry, only terms that are

acted by a derivative can appear in the theory: L = L
(
θ̇, ∂iθ

)
. This may contain terms with any power of the

derivative of the field.
However, this theory has more symmetries. In a generic space-time and adding a gauge field, which is a

natural extension of the simple scalar field model, we require that this Lagrangian is invariant with respect
to three-dimensional general coordinate transformations and gauge invariance. The most general Lagrangian
L = L

(
Dtθ, g

ijDiDjθ
)

that is invariant under these symmetries, shift symmetry, gauge invariance and general
coordinate invariance, is given by,

L = P (X) , with X = Dtθ −
gij
2m

DiθDjθ , (66)

where Dtθ = θ̇ +A0 and Diθ = ∂θ −Ai. In flat space, gij = δij , the general coordinate invariance corresponds
to a Galilean symmetry.

As it can be seen in (Son and Wingate 2006), Galilean symmetry is not enough to constrain the NLO terms
and one needs to consider the full general coordinate invariance. This is equivalent to considering an additional
constraint for the theory, which is known from fluid hydrodynamics,

T0i = mji , (67)

where T0i is the off-diagonal component of the energy-momentum tensor. As stated in (Greiter et al. 1989;
Dubovsky et al. 2012) this additional constraint (with an analogous constraint in the case of relativistic systems
(Dubovsky et al. 2012)) states that only one degree of freedom carries all the current and momentum. Introducing
a new symmetry, full general coordinate invariance, is equivalent to assuming this relation.

With the two symmetries of the system, in the absence of gauge fields A0 = Ai = 0, the Lagrangian that
describes this system is given by:

L = P

(
θ̇ − (∂iθ)

2

2m

)
. (68)

This is a Lagrangian that has a non-canonical kinetic term and it obeys (67).
At the background θ = µt, and T = 0, this Lagrangian density is equal to the pressure P = P (µ). With that

we can evaluate the particle number density,
n = P ′(X) , (69)

where ′ indicates the derivative with respect to A0. For the condensate then the equilibrium number density at
chemical potential µ is n(µ) = P ′(µ), where P (µ) is the thermodynamical pressure, defined up to a constant.

Given the Lagrangian (68) with θ = µt+ φ we can write the Lagrangian as:

L = P (µ)− nφ̇+
1

2

∂n

∂µ
π̇2 − n

2m
(∂iπ)2 . (70)

We can see from that the phonon speed of sound

cs =

√
n

m

∂µ

∂n
=

√
∂P

∂ρ
, (71)

where ρ = mn is the mass density.
One limit of this EFT Lagrangian is the quadratic Lagrangian for the weakly interacting BEC, shown in

(57). We can see that by considering the special case where P (X) is written as a polynomial, P (X) ∝ (θ̇/m)n.
Depending on the power chosen we will have a superlfuid with a different equation of state:

n = 2 : P ∼ ρ2 BEC/Sf (2− body)
n = 3/2 : P ∼ ρ3

n = 5/2 :, P ∼ ρ5/3 Unitary Fermi gas
(72)



Ultra-light dark matter 31

These represent different systems. The case n = 2 is equivalent to the previous case, in section 3.3, where we
had a superfluid with a two-body interaction described by the microscopic weakly interacting theory, where we
obtained P (X) = X2 for the low-energy (57). The case with n = 3/2 can correspond to the same theory as
the previous case, a weakly interacting theory, but with a three-body interaction, with this effective Lagrangian
obtained by integrating out the massive radial mode, like done in the previous section. These two equivalences
shows us an interesting aspect of this EFT and from the hydrodynamics of superfluids: the interaction is linked
to the equation of state of the superfluid, and this can be seen by a different choice of P (X) in the EFT. The
case n = 3/2 can also represent another completely different superfluid system, like we will see in the case of
the superfluid DM in the next section, where the this case does not come from a weakly interacting microscopic
theory with three-body interaction. This is also the case for the other example we show here, the unitary Fermi
gas, which cannot be described by a microscopic theory like we did in the previous section, and being described
with this EFT if n = 5/2.

One comment is in order here. Usually in quantum field theory having fractional exponents can be prob-
lematic, leading to caustics or superluminal propagation. However, in the case of the superfluid this is not a
problem. Before reaching these regimes (like the formation of caustics), the superfluid coherence is broken, and
the EFT description of the superfluid is no longer valid.

If one wants to add an external or trapping potential Vext, like for example if the gas is under the influence
of a gravitational potential, this corresponds to making A0 = Vext. With that, the Lagrangian is given by (66),

with X = θ̇ − (∂iθ)
2

2m − Vext. In the case of the a condensate in a gravitational potential this is given by

L = P (X) , with X = θ̇ − (∂iθ)
2

2m
−mΦ , (73)

where Φ is the gravitational potential. This is going to be the case studied in the next section for the DM
superfluid.

With that Lagrangian we are able to describe the theory as the other approaches we used to describe the
BEC and superfluid theories.

Equivalence of the EFT description: For low energies, and in the non-relativistic case, the EFT of
superfluids is equivalent to the microscopic description presented above. Considering P (X) ∝ (θ̇/m)n.

2− body L = −|∂Ψ |2 −m2|Ψ |2 − g

2
|Ψ |4 ⇐⇒ L = P (X) ∝ X2 −→ p ∝ ρ2

3− body L = −|∂Ψ |2 −m2|Ψ |2 − g3

2
|Ψ |6 ⇐⇒ L = P (X) ∝ X3/2 −→ p ∝ ρ3

Superfluid hydrodynamics: From this formalism we can also describe the superfluid hydrodynamics. From (69)
we re-write the field equation with respect to the number density to obtain the continuity equation:

ṅ+
1

m
∂i (n∂iπ) = 0 . (74)

The gradient of the field π can define the velocity of the superfluid, vs = −∇θ/m = ∇π/m, we can derive the
second equation of superfluid hydrodynamics:

π̇ = −µ(n)− mv2
s

2
. (75)

Validity of the EFT: As we saw above, this theory is valid for low energies, or long-wavelength, and breaks
for high energies. The Lagragian shown here is valid in leading order in derivative expansion. In this regime
it reproduces the results from hydrodynamics of superfluids. But this framework also allows us to go beyond
leading order in this momentum expansion, the next-to-leading order (NLO) Lagrangian. In (Son and Wingate
2006), they show a prescription to take into considerations next-to-leading order terms. This can be done in this
framework at arbitrarily order, only requiring that the NLO Lagrangian respects the symmetry of the system,
and at the cost of introducing new free parameters. This might allow the study of those systems in a regime
that is challenging for the microscopic perturbative description.

However, the validity of this effective theory constructed here still needs to be checked as higher order terms
in the Lagragian can only be neglected if the sound speed of the theory is not too small. In Sect. 4.2.5, we
describe the validity of the EFT for that concrete example of superfluid and show that the theory is valid for
the parameters of the model.
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This theory is also only valid in the absence of dissipation. For a discussion of how to describe dissipative
phenomenon in this EFT approach can be seen in (Berezhiani 2020).

The formalism of the EFT presented here is used to describe the low-energy dynamics of the superfluid
Goldstone mode, the phonon. This formalism is more general, tough, and translates into a EFT language
the hydrodynamics of fluids at zero temperature and without dissipation, so it can be generalized to describe
superfluids with different equation of state, supercondutivity, unitary Fermi gas, among other systems. This
low energy EFT approach is very useful to describe the dynamics of various physical systems and writing the
superfluid in this macroscopic effective Lagrangian offers us the chance to study the dynamics of this system
without having to work out the details coming from the microscopic short distances physics. With that this
formalism allows us to study the behaviour of more complicated superfluids, with different equations of state
that might come from different and more complicated interactions. This will be useful to describe the DM
superfluid model, in Sect. 4.

3.5 Rotating superfluid - quantum vortices

When we rotate a normal fluid, the fluid rotates together with the recipient in a homogeneous way, like a rigid
body, with vorticity ∇× vn = ∇×Ω× r 6= 0, where the normal fluid velocity vn of a rotational fluid is given
by the cross product of the angular velocity and the position.

As we saw above, a superfluid, described by a weakly-interacting BEC, has irrotational flow: vs = (~/m)∇θ
which gives ∇ × v = 0, where viscosity is absent. This is the defining property of a superfluid. In another
language, this means that the circulation, around a closed contour C in a superfluid is given by:

Γ =

∮
C

v · dl =
~
m

∮
C
∇θ · dl =

~
m

∫
∇×∇θ = 0 , (76)

where dl is a length element on the path C and A is the area enclosed by this contour. When a superfluid
is rotated, this property says that the superfluid would not rotate, but would remain stationary. So, how can
we rotate a superfluid and maintain the irrotational flow? This is possible if the superfluid phase presents a
singularity.

A superfluid is a state where the system is described by one macroscopic wavefunction. In the presence of this
singularity, this wavefunction is single-valued, ψ(θ) =

√
ρ/meiθ = ψ(θ + 2πn), which leads to the quantization

of the circulation:

Γ =

∮
C
∇θ · dl =

~
m
∆θ = 2πn

~
m
. (77)

This properties above describe a vortex. The way a superfluid rotates is inhomogeneous by forming quantized
vortices (Tsubota et al. 2010, 2013; Barenghi et al. 2001).

From that we can see that the azimuthal velocity is of a irrotational fluid is given by vφ = n(~/m)(1/r),
where r is the distance to the center of the closed loop C and φ is the azimuthal angle. At the center we have
the vortex core, as limr→0 ψ → 0, of size equal to the healing length, where the density ρ vanishes and θ, the
phase, rotates by 2π around the core. The flow in the center is given by the vortex line. The vorticity of the
rotating superfluid is given by:

∇× vs =
~
m

Nv∑
i=1

2πδ(ri)ẑ . (78)

where ri is the location of the Nv vortices, and we considered that the vortex lines are in the z-direction.
The vorticity is non-zero only at each vortex. So the flow is irrotational in most of the superfluid, except in the
vortices. Given that the vortices are line singularities, they form a lattice of uniformly distributed vortices in the
superfluid and carry the angular momentum of the rotation Lz = nLqm, where Lqm = ~N is the the minimum
angular momentum necessary to have one quantized vortex and N =

∫
|ψ|2 is the number of particles in the

condensate. This configuration is energetically preferable (instead of for example concentric sheets around the
superfluid). With that, the spatially averaged vorticity is given by:

〈∇ × vs〉 =
~
m
nv ẑ = 2Ω ẑ , (79)

where nv = 2Ω/(~/m) is the density of vortices, which is related to the angular velocity (Feynman 1955).
Although most of the superfluid has irrotational flow, the rotational flow is given by the vortices in a way that
the whole superfluid then effectively flows as a normal fluid 〈vs〉 = vn, allowing the superfluid to rotate.
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Fig. 8 Left panel: Schematic of a superfluid in a rotating box. A lattice of vortices is homogeneously formed in the superfluid.
Right panel: Figure from (Abo-Shaeer et al. 2001) showing the experimental observation of a highly ordered vortex lattice.

Given that the superfluid has irrotational flow, if it is rotated by a small Ω, the superfluid will remain
stationary. There is a critical angular velocity, Ωc, above which the nucleation of vortices in the superfluid
occurs. The critical velocity is given by (Guadagnini 2017):

Ωc =
1

mR2
ln

(
R

ξ

)
, (80)

where R is the radius of the cylinder where the superfluid is contained. Through the dependence in the healing
length we can see that the critical angular velocity depends on the interaction, for the case of a weakly interacting
BEC that behaves as a superfluid. The case where the interaction is attractive, g < 0, it is known not to produce
vortices. This is also the case where the BEC has a finite size coherence, producing only smaller soliton cores.
This condition for the formation of cores can also be re-written as L � Lqm, where L angular momentum of
the applied rotation to the system.

If there is the formation of vortices, the area density of vortices is given by nv = n/ABEC = mΩ/π~. From
that, we can calculate the size of the vortices created (πR2

v = 1/nv) which depends on the mass and the angular
velocity of the fluid, Rv =

√
~/mΩ.

But what exactly is the structure of these vortices and how are they described? As we saw before, we defined
the vortex as a singularity, where the wavefunction is zero at the vortex line, with a quantized circular irrotational
flow around the vortex line. Given this, we represent the vortex as an object in cylindrical coordinates: ψ(r) =
f(r, z)einφ. To describe the density distribution, their structure and size, one has to solve the Gross–Pitaevskii
equation for this object, which in the case of the weakly interacting Bose gas is,

− ~2

2m

[
1

r

∂

∂r

(
r
∂f

∂r

)
+
∂2f

∂r2

]
+

~2

2m

n2

r2
f + V (r, z)f +

g

8m2
f3 = µf . (81)

In the limit n = 0 we recover the standard Gross–Pitaevskii equation. So the term that contains n is called
the centrifugal barrier and it is the kinetic energy term from the azymutal velocity of the vortex. Solving this
equation gives the density profile of the vortex, from which we can determine the size, density and general
structure of the vortex.

In the presence of a trapping or external potential, changes the density of the condensate which also changes
the dynamics of the vortices. For details of the formation of vortices in the presence of a trapping potential see
also (Fetter 2009).

Since its discovery in Helium 4 superfluid, vortices have been one of the central topics in the research of
supefluidity (Madison et al. 2000). They have been experimentally observed in many systems like Helium 4
and Helium 3, superconductors and atomic BECs, including multi-component BECs. These new observational
advances allowed us to vizualize and study those vortices, as it can be seen in left panel of Fig. 8.

3.6 BEC in wave turbulence - kinetic theory

We studied in this section the BEC and the superfluid, and showed that their dynamics is described by the
Gross-Pitaevskii equation, which is a non-linear Schrödinger equation. This equation expresses the evolution of
the condensate, which is described by the collective wavefunction formed by the macroscopic occupation of the
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ground state by the bosons, in the mean field self-potential. This theory is capable of describing many different
condensate systems and describe the properties of BECs that can be tested with experiments. There is, however,
an alternative way to describe the physics of a BEC, using the theory of wave turbulence.

Wave turbulence is the theory that describes non-equilibrium statistical systems using random non-linear
interacting waves. These random interacting waves are the fundamental constituent of the theory. Waves in a
non-linear medium interact and behave very differently than waves in vacuum and wave turbulence describes
these systems of interacting non-linear waves. This approach can be used to describe many different physical
system from quantum fluids to astrophysics, which is our main interest. Wave turbulence arises in classical
context in systems like non-linear optics, surface waves in water, magnetic turbulence in interstellar gases,
among many others (see (Nazarenko 2011a) for a list of examples and references). Quantum fluids are also
physical systems where wave turbulence occurs, and this approach can be used to explain exotic superfluids,
atomic BEC, second sound waves in 4He superfluid, and other systems as it can be seen in (Kolmakov et al.
2014). Wave turbulence is a formalism specially useful to model these systems numerically and for experimental
studies.

Wave turbulence can arise either in strong or weak interacting system of random non-linear waves. Weak
turbulence is a limit where it is considered that all the waves are weak and have random phases. It provides a
theoretical framework for wave turbulence theory to describe many physical system, representing those systems
by a wave kinetic equation. This equation describes the evolution of the wave spectrum, two point correlation
function or the probability distribution function, via averaging over random phases, of a system. This kinetic
equation is different for each system and can have a three wave non-linear interactions, four-wave interactions
or even higher order depending on the system described. Higher moments of this equation allow the study of
deviations of gaussianity or to explore the limits of validity of the wave turbulence.

Wave turbulence can also be used to describe Bose Einstein condensates and superfluids. It can offer a way
of describing different stages of a BEC systems in a nearly equivalent way of its proper description through
the non-linear Schrödinger equation presented above. We are going to show now how and for which limits
a BEC can be described using wave turbulence approach. We are going to show that wave turbulence with
four wave interaction, which reproduces the non-linear Schrödinger equation, can only describe the classical
initial evolution of a BEC, breaking as the condensate evolves. We also show that the quantum evolution of a
condensate can be described by this theory. Wave turbulence also offers a description for a BEC and superfluids
outside the weak interaction limit, but we are not going to discuss this case here.

We want to develop a statistical description of the wavefunction and of the non-linear Schrödinger equation,
and determine the kinetic equation which is the main equation of the wave turbulence theory. This is done by
describing the evolution of an ensemble of waves (in contrast with the Boltzmann equation that is the equation
that describes the evolution of a distribution of particles). For that we introduce the Wigner distribution (Wigner
1932)

fp(x, t) ≡
∫
dy e−ip.y〈ψ(x +

y

2
)ψ∗(x− y

2
)〉 , (82)

where the average is the average with respect to the random initial phases of the field. The Wigner distribution
is a quasi-probability distribution, it behaves like a probability distribution but it does not obey all the axioms
of probability theory by Kolmogorov (Kolmogorov 1933). It can be used to represent this ensemble of waves
with random initial phases, or of random classical fields. As a quasi-probability it can acquire negative values
indicating interference of waves in phase-space (Choi 2006) describing the ondulatory behaviour that can be
captured in this description.

We want now to describe the evolution of this ensemble. We want to have a kinetic theory that is nearly
equivalent to the GP equation (25) for a weakly interacting system. For that, as we can see from the interacting
Hamiltonian of this theory (20), we need a four wave interaction. With that we can rewrite (25) using (82) as

∂f

∂t
+

p

m
· ∇xf = 2 Im

∫
dy e−ip.y〈ψ(x +

y

2
)ψ∗(x− y

2
)Utot(x +

y

2
)〉 , (83)

where we wrote fp(x, t) as f for simplicity of notation. Here we are considering that Utot = g|φ(x)|2. This is
the kinetic equation or the wave kinetic equation.

This equation gives the evolution of the distribution that describes the an ensemble of waves that is the two
point correlation function of the field. This distribution can be interpreted as the wave action or the particle
number density or particle occupation number, where this second interpretation leads us to the idea we had
before that ψ can be thought as the classical limit for the quantum wavefunction or field of a weakly interaction
Bose gas (Dyachenko et al. 1992; Mendonça et al. 2005).

We want to obtain the closed form of the kinetic equation, expressed in terms of f . The above kinetic
equation presents, in the case of the four wave interaction, a four point correlation function. For the case of
weak coupling that we are studying here, the Wick theorem is approximately valid and we can express this
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four-point function into the sum of two-point functions, reducing the higher order problem into a lower order
one:

〈ψ1ψ
∗
2ψ3ψ

∗
4〉 = 〈ψ1ψ

∗
2〉〈ψ3ψ

∗
4〉+ 〈ψ1ψ

∗
4〉〈ψ3ψ

∗
2〉+ 〈ψ1ψ

∗
2ψ3ψ

∗
4〉conn , (84)

where we simplified the notation writing ψi = ψ(xi), and the last term represents the connected part of the
correlation function, the non-diagonal part of the operator. The connected part is non-zero if the distribution
is non-Gaussian, and it is also higher order in the interaction.

In the regime of small non-linearities and taking the random phase approximation (Navez 2005), which
allows us to ignore the higher order correlations, we can write the closed form for this equation. We wish to
work in Fourier space, so we take the Fourier transform of the field. The above approximations correspond
to ignoring higher Fourier moments and writing equation (83) in terms of the two-point correlation function
〈ψkiψkj 〉 = n(ki) δ(ki−kj), where δ(ki−kj) is the Dirac delta (Nazarenko and Onorato 2006; Nazarenko 2011b;
Zakharov et al. 1992b). Given these assumptions, we can re-write the kinetic equation in closed form:

ṅk = 4π

∫
n1n2n3n4

[
1

nk
+

1

n3
− 1

n1

1

n2

]
δ(k + k3 − k1 − k2) δ(k2 + k2

3 − k2
1 − k2

2) dk1dk2dk3 . (85)

The above equation is the equation for the evolution of the wave spectrum. One can also also write the equa-
tion for the higher moments if interested in investigating deviations from gaussianity or the limits where this
description breaks, among other phenomena.

This equation reproduces the non-linear Schrödinger equation, which is the equation that governs the evo-
lution of a wavefunction. Any wavefunction. It can be thought as the quasi-classical limit at high occupation
number of the quantum kinetic equation (we discuss this later in this section). This equation describes the
evolution of any ensemble of classical waves that is described by the Schrödinger equation. It describes a non-
condensed system, since in this description condensate density, which is the density of particles in the ground
state which in the language of waves translates into waves with k = 0, is relatively small (in comparison to a
strong BEC deep into the region T � Tcr where the number of particles in the ground state is almost equal
to the total number of particles). When the condensate density is large or the population of lowest momentum
states is large, the system is not weakly non-linear anymore and the above description breaks. However, this
description can be used to the initial stages of a condensate, when the condensate density is still small. We call
this limit ”weak” condensate. When we have self-interactions the system can form a superfluid, and for this four
wave system this equation describes the vicinity of superfluid transition. Therefore, the kinetic equation with
four-wave interaction can describe the classical initial evolution of a BEC, when we have a ”weak” condensate.

As temperatures drop and the condensate density becomes larger, we have a ”strong” condensate. In this
stage of the evolution of the condensate the above description with a four wave interaction is not a descriptiion
of the system, and the evolution of the occupation number of the condensate needs to be described by the wave
kinetic equation with three-wave interaction(Nazarenko 2011b; Zakharov et al. 1992b; Dyachenko et al. 1992;
Lvov et al. 2003). This three wave interaction representation describes the later phase in the evolution when the
condensate is strong and fluctuations on top of the condensate are only given by phonons. Only at this stage
the theory can again be described by weak turbulence, but now involving three-waves. The intermediary regime
between these two description is more complicated. After the four-wave description breaks down, the system is
highly non-linear composed by a gas of hydrodynamical vortices. Only after these vortices annihilate and most
of the systems is in the condensed phase, one can use the three-wave description.

One possible solution of (85) is the Kolmogorov–Zakharov (KZ) spectra, which is a non-equilibrium steady-
state solution. Within this solution we can have turbulent cascade processes, with a dual cascade for different
direction of the energy flux. The interpretation of these dual cascade processes in BEC is interesting and corre-
sponds to techniques used in experimental realizations of BEC. Inverse cascading, which is the non-equilibrium
transfer of particle to the lowest energy momentum can be though as condensation. The the initial process of
BEC formation can be achieved in this process as a non-equilibrium condensation. The forward cascading is a
processes is the energy transfer to higher momentum states, higher energy level. When the condensate is in a
trap, these particles are going to leave the trap, and this is called evaporative cooling.

We studied above the case without a trapping potential. When in a trapping potential, the condensate
density is now coordinate dependent and the behaviour in this trap will depend on the relation between the
characteristic mean free path of the excitation wave packets and the size of the trap or the range of the force
that produces this potential.

We are gong to see in Section 4.1.4 another solution of the above four-wave kinetic equation in the case of
long-range interactions, like the gravitational interaction. The potential is present and it is the gravitational
potential. This is described by the Landau kinetic theory, and can describe the initial stages of a condensate in
the presence of gravitational interactions. Different than in the KZ description of condensation discussed above,
in this case condensation does not arise from a cascading process but from a dissipation process.

We described above the four-wave classical kinetic equation. This is a good classical limit representation of
the initial stages of a BEC. However, this is not a description of strong condensates, as a three wave kinetic
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equation needs to be adopted instead. This is also not a description of the quantum condensate. Wave turbulence
theory can also be used to describe the full quantum regime of condensate, and not only the classical limit
described until now. To be able to do that we first need to discuss the statistical distributions that the kinetic
equations describe.

One of the distributions that is a solution of the classical equation (85) is the Rayleigh-Jeans (RJ) distribu-
tion, nk = T/(k2 +mu), with T > 0 and µ > 0. This is similar to what we find when we are studying classical
limit of the systems described by the Gross-Pitaevskii equation. Thu full quantum system described by (21) has
a occupation number that describes a Bose-Einstein statistics. The classical limit of this system, described by
the Gross-Pitaevskii equation has a mean occupation number in equilibrium described by the RJ distribution,
the classical limit of the Bose-Einstein distribution: 〈nk〉 = kBT/(εk − µ), where µ < 0. This system describes
a condensate only when the occupation of the ground state is macroscopic, 〈nk〉 → 〈N0〉.

The temperature T in this RJ distribution is related to the initial energy of the system E0 =
∫
dkωknk =

T
∫
dk, where ωk = k2 + µ, in connection to thermodynamics. From this we can see that since each degree of

freedom of the theory has the same energy T , for a continuous and infinite system, the this and the energy
diverge. This is the classical RJ catastrophe or the UV catastrophe.

Thus, the UV catastrophe is inherent to the ensemble of classical nonlinear waves. It is argued then that for
the RJ solution to be a relevant solution of the kinetic equation a cutoff needs to be introduced to regularize
the UV catastrophe. This is as a phenomenological way of making the classical description of the system valid.
Therefore, describe a BEC in such a classical theory one needs to have a momentum cutoff in the theory. This
truncated system then can be used to describe the evolution of a classical ensemble of waves via the kinetic
theory derived above. In realistic systems, this cutoff sometimes comes naturally from dissipation or limits of
the simulation or experiment. If one is working in a description where the UV catastrophe does not take place,
where the evolution period of the system is not threatened by this divergence, then the above description for
the classical condensate also holds. This will be the case of Section 4.1.4.

Another solution to make the description valid (avoiding the UV catastrophe) is to go to a quantum statistics.
We can modify the kinetic theory in order to obey a Bose Einstein statistics. We generalize the kinetic equation
to:

ṅk = 4π
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The Bose-Einstein statistics is now a solution of this equation. This is the quantum kinetic equation and can be
used to describe the full quantum BEC.

We showed above that we can use wave turbulence as an approximate description of some regimes of a BEC.
The classical four wave kinetic equation can be used to describe the initial stages of a BEC in the classical
limit. Different description will arise for different stages of the evolution of the condensate.Wave turbulence can
also describe both classical condensate evolution and quantum evolution. A BEC is a quantum phenomena, but
its classical evolution can approximately be described by wave turbulence which is a convenient description, in
particular for simulations.

We are going to use kinetic theory to describe the formation of the BEC in Section 4.1.4.

3.7 Summary and discussion: what is a condensate?

We saw in this section an introduction to two of the most interesting phenomena in quantum mechanics, the
BEC and superfluids. We went through all these concepts in detail with the goal to give a proper definition of
Bose Einstein condensation in the context it is well understood and measured.

BEC is the phenomena of macroscopic occupation of the ground state that happens at low temperatures.
BEC is a consequence of the quantum statistics of bosons, and it is an inherently a quantum phenomena.
Equivalent to having a macroscopic occupation of the ground state, condensation can be though a the regime
where the interparticle distance is smaller than the de Broglie wavelength of the bosons, which leads to a
superposition of these wavefuctions, creating a macroscopic wavefunction that describes the condensate, which
is a macroscopic quantum object. One of the main properties of a BEC is that it presents macroscopic (long
range) quantum coherence.

We also saw that we can describe a more realistic condensation processes by using a weakly interacting Bose
gas, which exhibits superfluidity upon condensation. This theory is described by the fully quantum many-body
Hamiltonian. For a large number of particles (N � 1), this Hamiltonian is very complicated to be studied.
But, when the interactions in the BEC are weak, the BEC is dilute24 na3 � 1, and for large N, we can take
the mean field approximation. In the mean field approximation, we can make the huge simplification that the

24 The BEC has 3 scales in the absence of a trapping potential: the de Broglie wavelength, the s-wave scattering length a and the
inter-particle distance d. In order to describe the scattering of two particles that have large λdB as the scattering of two bodies, we
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many-body wavefunction can be approximated by an effective single-particle wavefunction. This means that the
wavefunction of the condensate can be written as:

Ψ̂(r, t) = ψ(r, t) + δΨ̂(r, t) , (87)

where ψ(r, t) ≡ 〈Ψ̂(r, t)〉 (this is a classical quantity, because if it was quantum this average would be zero).
The field ψ(r, t) is the classical field or classical wavenumber. Quantum effects are suppressed in this limit (the
depend on 1/N), and the BEC is well approximated by a classical theory25. The classical field that represents
the condensate satisfies the (classical) non-linear Schrödinger equation or Gross-Pitaevskii equation. Therefore,
the classical Gross-Pitaevskii or non-linear Schrödinger description of a condensate is a mean field description
of condensate.

An important detail about the mean field approximation. In the classical limit of a scalar field we also have
(87), where ψ = 〈Ψ̂〉 is the scalar field and δΨ̂ are suppressed quantum corrections. Now, when a condensate can
be treated as classical we are also in the limit where we can expand (87), but we have |ψ(r, t)|2 = n0 = n, which
means that there is a macroscopic occupation of the ground state. For the classical limit of the condensate,
as the term δΨ̂(r, t) becomes more and more important and the mean field approximation break this can be
seen as depletion of the condensate. This limit can be broken if temperature or interactions are increased, then
quantum and thermal fluctuations deplete the condensate26. At this point the mean field approximation breaks
and this classical description of the condensate cannot be used anymore.

Although the condensate to be formed depends on the quantum statistics of bosons and it is a quantum
phenomena, it can be treated as classical in the mean field approximation. In an equivalent way, in the field
description of BEC, the condensate can be described in the mean field limit by a classical field27.

Summarizing : A BEC can be described by a coherent classical scalar field that satisfies the Gross-Pitaevskii
equation, in the mean field approximation where most of the particles are in the ground state, |ψ(r, t)|2 = n0 = n.

The term ”condensate” is used in the literature loosely meaning different things for different authors. I will
use throughout this review the definition presented here. Therefore, every time I am using the term condensate,
I am referring to the definition described here.

4 Ultra-light dark matter

After the introduction in the previous sections of the concepts that are going to be applied in this part of the
review, we are finally ready to discuss the ULDM models.

Ultra light DM denotes a class of models where DM is composed by ultra-light bosons. These models
were introduced as a new class of DM models that can address the small scale challenges of ΛCDM, but
mainly as models that offer a novel and rich phenomenology in galaxies that can be tested with small scale
observations. The general idea of those models is that inside a virizalized DM halos, ULDM thermalizes and forms
gravitationally bounded cores that can be described as a BEC or a superfluid. In this way these models behave
like CDM on large scales, with modified initial conditions, recovering the incredible observational successes of
this description, while inside galaxies they present a wave-like behaviour.

In order to have this behaviour inside galaxies, the mass of this bosonic DM has to be very small. There are
many models in the literature of ULDM that present this wave-like behaviour in galaxies, and the specific range
of masses where this wave-like behaviour happens in galaxies depends on the specifics of the models. However,
we can estimate in a model independent way the range of masses of the ULDM particles in order to present
this behaviour in galaxies. The mass of the ULDM has to be:

10−25 eV . m . 2 eV . (88)

have to have d� a. The mean field approximation is applicable in the limit where we have many particles N large and na3 � 1,
meaning that the interactions in the condensate are weak, which translates to a� λdb. A condensate that follows this condition is
said to be dilute, which means that for fixed n, the bosons almost don’t interact, a must be very small.
25 The mean field approximation, N large and weak coupling, and the classical limit (~→ 0) not always coincide. The mean field

approximation is called semi-classical in some places of the literature. In some instances the mean field N → ∞ can be recast as
a classical limit(Dimonte et al. 2018). The mean field approximation is usually concerned to systems that preserve the number of
particles, like condensates.
26 It is also possible to describe a non-condensate quantum system in a classical limit. This was seen in the wave turbulence

theory. In this case, there is no macroscopic occupation of the ground state but the entire system is still in the high occupation
classical limit. In this case δΨ̂ is not the depletion from the condensate but it represents the quantum correction to the system.
27 There is only one example in the literature of condensed matter physics where there is classical ”condensation”. This happens for

electromagnetic light waves in nonlinear optics (Sun et al. 2012; Conti 2012). Kinetic condensation is achieved when the light beam
goes from a disordered to a coherent state. However, as it was emphasized in (Connaughton et al. 2005) this classical condensation
is a process analogous to the (genuine) Bose Einstein condensate, having similar properties and obeying the non-linear Schrödinger
equation. This is a very new and active field of study and it is going to be very interested to see the development of this field.
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The lower bound on the mass is very general and comes from the fact that the size of the condensate core cannot
be larger than the halo, since we want the condensate only on galactic scales and normal DM on larger scales.
The maximum case we can have for the formation of a condensate is where the de Broglie wavelength of the
ULDM particle is of the order of the size of the halo. Taking this bound at virialization, there is a maximum
value on how large the de Broglie wavelength can be λdB < R200. Taking zvir ∼ 2 and for halos with mass of
order of 1012M�, we can see that for a spherical halo (Rindler-Daller and Shapiro 2012) this imposes a lower
bound on the mass

m > mH ≡
2~√
3G

(RM)−1/2 ≈ 10−25

(
M

1012M�

)−1/2(
R200

100 kpc

)−1/2

eV . (89)

We can also impose an upper bound on the mass asking the question: what is the biggest mass I can have
that ULDM forms a core inside the galaxy? Again, to answer this question one needs to work with a specific
ULDM model to study the Jeans theory of this model and the solutions of the equations in this region, which
would give a bound within this model for the creation of these cores. However, one can try to be more general.
The non-CDM behaviour happens in the regions where the wave behaviour takes place. So, the interesting non-
CDM behaviour occurs on scales of the order or smaller than the scale that characterizes the wave which given
by the de Broglie wavelength. This is the maximal case where the de Broglie wavelength of the ULDM particle
is of the size of the galaxy. But one can also think that we can obtain a galaxy size wave as the superposition
of the de Broglie wavelength of each of the ULDM particles (which are themselves smaller than the galaxy in
this hyphothesis). Then we can calculate the biggest mass, which means smaller de Broglie wavelength if each
particle, for which this superposition yields a galaxy size wave. This translates to the condition that de Broglie
wavelength of the boson DM is larger than the inter-particle distance between each boson,

λdB ∼
1
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, (90)

where assuming a spherical halo, the interparticle distance is defined as the radius of a sphere with density ρ.
This gives a bound on the mass of the DM particle. This condition is the same as the condition that a gas
need to have in order to condensate into a BEC, as we can see in the box in Section 3.1 since it is equivalent
to the condition of having macroscopic occupation number of the ground state for temperatures bellow the
critical temperature of the system. This condition does not determine condensation of DM in the halo, since
showing that condensation happens in the halo is much more complicated than this ideal gas condition that
is not realistic for the halo, but it is a 0th order condition for this phenomena together with the assumption
of thermalization. But here we use it only as a condition to form a galaxy size macroscopic wave from the
superposition of the individual particles’ waves.

We use the density and velocity of the dark matter halo like described in Sect. 2 from standard spherical
collapse Berezhiani and Khoury (2016), and take this bound at virialization:

ρ200 = 200ρcr ∼ 1.95× 10−27 (1 + zvir)
3

g/cm
3
,

V200 ∼ 85
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)1/3√
1 + zvir km/s , (91)

where we derived these expressions assuming H0 ∼ 70 km s−1 Mpc−1 and a halo mass of order of the MW. This
gives the bound:

m . 2.3 (1 + zvir)
3/8
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1012M�

)−1/4

eV . (92)

Taking zvir ∼ 2 and for halos with mass of order of 1012M�, we have an upper bound for the mass of the
ultra-light DM particle in order to have galaxy-sized wave coming from the superposition of the wave of each
particle: m ∼ 2 eV28.

I would like to bring the readers attention to following. The issue of condensation of ULDM in the halo is
one of huge debate in the literature and we are going to discuss this in Section 4.1.5.

The range of masses showed above is just an estimate of the maximal higher and lower masses that the
ULDM can have. Each specific ULDM model has a mass range where this behaviour in galaxies takes place and
that it is in agreement with observations which depends on the specifics of the models. However, those bounds
have to always fall within this general range (assuming ULDM is all the DM in the universe - for studies where
this is not true see (Hlozek et al. 2015, 2018)). We will see in Section 5 that for the FDM model, using CMB

28 Remember here what we said before that it is much harder to show condensation for ULDM under the influence of gravity in
the halo of a galaxy. Condensation has been shown to happen in the case of the FDM in (Levkov et al. 2018), and we discuss this
in more detail in Section 4.1.
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and LSS observations and assuming again the FDM is all the DM, that the lower bound in the mass is very
close and within this theoretical estimation. Now for the DM superfluid model, as we will see in Section 4.3,
respects the upper bound presented here with the mass of its particle very close to this limit.

The mass range for the ULDM presents masses that are much smaller than the ones usually considered for
DM candidates and cannot be produced thermally in the early universe. Therefore, ULDM is a non-thermal
relic, having to be created by a non-thermal mechanism in order to be cold today and behave as DM. There are
many non-thermal production mechanism (see ’DM relics’ panel bellow) but since in this review we are being
agnostic on the type of particle that consists our ULDM, we are not assuming any creation mechanism, unless
we are talking about a specific microscopic candidate.

With that, for a ULDM candidate with a mass in the range (88) we are going to have a non-CDM like
behaviour coming from the presence of this core with wave-like behaviour inside the galaxy, while having a CDM
like behaviour on large scales, with different initial conditions resulting from the different mass and dynamics of
the specific ULDM model. ULDM is the name used to the collection of models that have the characteristic stated
above. There are many realizations of this behaviour which are present in each of the specific ULDM model,
that yield a different description of DM in galaxies, and a distinct and rich phenomenology in galaxies. We are
now going to see that those models can be classified into three main classes according to their descriptions in
galaxies.

Classification of ULDM models

The idea of having DM condensation on small scales is not new and has been around for 30 years (Sin
1994; Ji and Sin 1994; Khlopov et al. 1985). For this reason there are many models in the literature that were
developed to describe a DM component with that behaviour on galactic scales. These models receive many
names in literature. They are either models that have a microscopic description or phenomenological models,
which allow for the inclusion of different interactions and for a different dynamics to describe the evolution and
non-linear structures of DM in the halo, which in turn can lead to distinct and rich astrophysical consequences
on small scales.

One possible model of ULDM is the axion. This model helped to bring a lot of attention in the literature
to this class of models. In the case of the axion, we have a model that has a microscopic description and a well
defined cosmology. The QCD axions and general axions can behave like DM in a large range of parameters. This
is also the case for axion like particles (ALPs), which is another microscopic scalar theory that can describe
DM. These microscopic theories behave like DM, but only present interesting phenomenology in small scales for
a more limited range of masses. On small scales, the behaviour of these microscopic scalar theories can coincide
with the behaviour of other phenomenological models of ULDM. For all of those the non-relativistic action that
yield a non-linear Schrödinger-Poisson equation.

In this review we am going to classify the ULDM models according to the description they present on
the small scales, given by their non-relativistic dynamics on those scales. Each of these classes can contain
both phenomenological and microscopic models that yield the same non-relativistic model. This classification is
instrumental since it elucidates the physics responsible for the non-relativistic evolution and non-linear structures
that are formed, and separates the different phenomenology each of those classes present.

These different descriptions also yield different conditions for condensation (or if it condenses of not) and
formation of the condensate core. Each of these non-relativistic descriptions is going to describe a different
phenomena upon condensation, being possible to have either a BEC or a superfluid, the latter in the presence
of interactions.

According to this criteria, we classify the ULDM models into three categories (which somehow agrees with
what was suggested in Sharma et al. (2019)).:

Fuzzy dark matter (FDM): The first category is given by a gravitationally bounded scalar field model.
It described by a non-linear Shrödinger equation subjected to a gravitational potential, coupled to the Poisson
equation (see ’ULDM classes’ box). In this model condensation under the influence of the gravitational potential
is achieved in galaxies where the gravitational attraction is counteracted by the quantum pressure. This class of
model can be called fuzzy DM, since this name is already very well established for these gravitationally bounded
BECs. One of its main realizations, which coined the name fuzzy dark matter is presented in Hu et al. (2000a);
Hui et al. (2017), where the DM is given by a light particle with m ∼ 10−22 eV. The FDM model is the ULDM
model that was studied the most in the literature both theoretically and numerically. With a particle with this
mass, the FDM model is known to be able to solve some of the challenges from small scales presented above,
and to be in agreement with large scale observations. The mass of this model does not have to necessarily have
this value and need to be determined by observations, although this is the value that gives the most appealing
modifications on small scales. Therefore, this model has one free parameter, the mass of the FDM particle m (we
are considering in the review the case where all DM is composed of ULDM). Some interesting phenomenology
also emerges from this model, as we will discuss in detail in the next subsections, that can be probed by current
and future astrophysical observations. This model has also been called in the literature by wave DM, ψDM,
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among other names (Sin 1994; Ji and Sin 1994; Seidel and Suen 1990; Widrow and Kaiser 1993; Chan et al.
2018; Guzmán et al. 1999; Matos and Guzmán 2000; Matos et al. 2009).

Axions and ALPs, can also be thought to be in this class, since they yield exactly the same physics on small
scales. However, these models are more general and can describe DM for different values of their mass (like the
QCD axion that does not produce such structures).

Self Interacting FDM (SIFDM): The second category is called self-interacting FDM (SIFDM), but
it also receives the names repulsive DM, scalar field DM, fluid dark matter, among others in the literature
(Goodman 2000; Peebles 2000; Silverman and Mallett 2002; Arbey et al. 2003; Boehmer and Harko 2007; Lee
2009; Lee and Lim 2010; Harko 2011; Slepian and Goodman 2012; Dwornik et al. 2014; Guzmán et al. 2014;
Harko 2014; Fan 2016; Guth et al. 2015; Chavanis 2018, 2016; Dev et al. 2017; Chavanis 2011; Chavanis and
Delfini 2011; Chavanis 2012; Rindler-Daller and Shapiro 2012). In these models, DM is described by a scalar field
model, in the presence of gravity, with a (usually) 2-body self-interaction. The presence of the interaction makes
this model present superfluidity upon condensation. This case is described by the interacting BEC presented in
Section 3.3, which is the simplest example of a superfluid. The presence of the interaction controls the stability
of the core and for this reason this model presents a different phenomenology depending not only on the mass
of the particle, as for FDM, but given the strength and sign of the interaction. For a repulsive interaction, the
condensate has a long range coherence and presents superfluidity. The 2-body case is characterized by having an
equation of state (EoS), P ∼ n2, as we saw in the previous section. Higher order interactions, describe SIFDM
with different equations of state.

DM superfluid: The third category is called DM Superfluid (Berezhiani and Khoury 2015, 2016; Khoury
2016; Hodson et al. 2017; Berezhiani et al. 2018). This theory was proposed with the goal of reproducing the
MOND empirical law on small scales, presenting a natural framework for the emergence of this theory. Different
than in the case of SIFDM, in order to reproduce MOND on small scales it requires that the EoS is given
by P ∼ n3, like what is expected by MOND, with a more intricate dynamics describing the small scales. To
accomplish that, this model is described using the EFT of superfluids which allows us to describe superfluids
with a more general dynamics and EoS.

ULDM classes

Classification is based on the different ways they achieve condensation.

Fuzzy DM (FDM) described by a ultra-light scalar field under the influence of gravitational
potential. Forms a BEC on galactic scales.

iψ̇ = − 1

2m
∇2ψ + Vgrav

Self-Interacting FDM described by a self-interacting scalar field with 2-body (or higher) interaction.
(SIFDM)

iψ̇ = − 1

2m
∇2ψ + Vgrav + g |ψ|2ψ + g3 |ψ|4ψ + · · · (Superfluid)

DM Superfluid described by a superfluid with specific EoS to reproduce MOND in galaxies.

L = P (X) (Superfluid)

There are many amazing reviews in the literature that focus in different parts of the ULDM class of model,
either focusing in microscopic models, like describing axions Sikivie (2008); Arvanitaki et al. (2010); Wantz and
Shellard (2010); Kim and Carosi (2010); Kawasaki and Nakayama (2013); Marsh (2016) or ALPs (Ringwald
2014; Arias et al. 2012; Graham et al. 2015b; Marsh 2018; Niemeyer 2019; Powell 2016), or focusing in one
of the classes like the FDM Hui et al. (2017); Suárez et al. (2014); Ureña-López (2019), for which the axions
and ALPs describe the same non-linear theory (given by a Schrödinger-Poisson system in the absence of self
interactions). This review follows a classification between the different classes according to their non-relativistic
description and includes not only the FDM, but also the other classes of ULDM.

Given that, in this review we are going to be describing the dynamics each of these classes of models present
on small scales, and the different cosmological and astrophysical consequences this new phenomenology brings.
The exception is in the case of the for the FDM where we also are going to talk a little bit about the cosmology
of the axions and ALPs. However, in general, we are going to remain agnostic about the origin of this field and
we are going to work out only the gravitational consequences they have29. Understanding these consequences
will prepare the field for the next section, where we discuss constraints on these models. We briefly discuss in

29 The list of models we present here that compose each of the classes is not completely exhaustive and it only aims to show the
diversity of models in the literature, and the different mechanisms they describe. However, all the possible dynamics present on
small scales coming from ULDM are described here and can be within one of these three classes. In Lee (2018) one can find a more
complete list of references.
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the end of this section the big role that simulations have in studying these models and also the regimes where
these ultra-light fields can behave as dark energy.

Fig. 9 Map of the ULDM classes of models.

DM relics

Dark matter candidates can have distinct formation mechanisms, with the main ones being thermal or
non-thermal relics produced in the early universe. Depending on this mechanism, different masses and
couplings for these are allowed as the correct relic abundance of DM is obtained.

Thermal relics: This refers to the particles, including DM, that are produced from the hot and high
density thermal bath of the photon-baryon plasma in the universe. Initially, in the early universe, the
universe was in a state where it was hot and dense where particle and photons were very close to thermal
and chemical equilibrium. This means that the time scale of the particle interactions (1/Γ ) in the plasma
are much bigger than the expansion time of the universe H � Γ = n〈σv〉, where 〈σv〉 is the thermally
averaged cross section (Kolb and Turner 1990). As evolution follows and those quantities redshift, at
some point H ∼ Γ , and the particle decouples from the thermal bath (at the temperature Tfo). This is a
simplified description of the process called freeze-out or decoupling. Depending on the interaction rate of
each particles, they decouple at different times. This process is described by the Boltzmann equation and
it is how electrons, neutrons and neutrinos are formed. If Tfo � m, where m is the mass of the particle,
the particle decouples as a non-relativistic particle, and it is called a cold relic; otherwise, if Tfo � m or
Tfo ∼ m, and we have hot and warm relics.
We can assume that DM is a component that was in contact with the thermal bath and it is a par-
ticle produced through decoupling from the thermal bath like described above. For the thermal relics,
the particle with smaller mass is hotter. For cold relics, in the case of WIMP created through this
mechanism, for the WIMP to have the correct abundance of DM today, the averaged cross section is
roughly σDM−DM ' 10−8 GeV−2. This is of the same order of magnitude of the electroweak cross section:
σweak ' α2/m2

weak with α ' O(0.01) and mweak ' O(100 GeV) (Kolb and Turner 1990). Many models
of DM are produced thermally like supersymmetric candidates, more complicated WIMP candidates or
particle DM decays30.

Non-thermal relics: As we saw above, there is a limit for the mass of the DM particle that can be
created thermally. The only way of having smaller mass candidates of DM is by having a non-thermal
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mechanism to produce those DM particles. There are many mechanisms that can produce non-thermal
DM candidates that include decaying from topological defects (see for example (Sikivie 2008; Hiramatsu
et al. 2012) where axions are produced from the decay of axion strings or domain walls), decaying from
a massive parent particle, vacuum misalignment, among others (Marsh 2016; Bhupal Dev et al. 2014).
Vacuum misalignment or vacuum displacement is one of the genesis mechanism for these ULDM and
axions. The vacuum displacement mechanism (Preskill et al. 1983; Abbott and Sikivie 1983; Dine and
Fischler 1983; Carroll 1999) can be described, in a concise way in the following way. A massive scalar
field in an FRW universe, when H > mϕ, is overdamped and it behaves nearly as a constant. So, if we
consider that initially this field was displaced from its minimum, ϕ = ϕ∗, the field has a potential energy
given by ϕ∗. When H ∼ mϕ, the field starts to evolve and begins to oscillate in its potential, and in turn
redshifts like matter. The mass and the initial displacement fix the energy density of this misalignment
field. If we consider that the ultra-light particles are created by this mechanism, it imposes a lower bound
on the mass H(aeq) ≈ 10−28 eV, in order to start behaving like DM around equality. For more detail on
this mechanism for axions, see Marsh (2016).

4.1 FDM and SIFDM

In this section we are going to describe the FDM and the SIFDM models. Although they both describe different
non-relativistic dynamics and structure formation in the halo, and according to our classification are in different
classes, we describe them in this section together since they can be described by a relativistic action. Even
tough we are interested in the non-CDM phenomenology of these models on small scales, these models can also
modify the initial conditions for the evolution of the matter perturbations, and depending on the mass, modify
the evolution of the model. In this way, the relativistic theory allows us to study the cosmology of this model
and with that make predictions that can be tested by large scale observations like CMB and LSS. This helps
us to describe the model in different scales and use observations from large and small scales to constraint the
parameters of the model.

The ULDM is described as a very light scalar field minimally coupled to gravity given by the action,

S = SEH + Sφ =

∫
d4x
√−ḡ

[
R

16πG
+

1

2
gµν∂µφ∂νφ−

1

2
m2φ2 − g

4!
φ4

]
, (93)

where SEH is the Einstein Hilbert metric, R is the Ricci scalar, gµν is the metric, ḡ is the determinant of the
metric and g is self-interaction coupling.

The axion or ALPs are described by an action like this. In this case, this action has a microscopic theory
behind it. This potential comes from non-perturbative effects in QCD, for the axion, or other concrete string
theory models, and gives a small mass for the axion or ALP. Since in these cases this action comes from a well
defined microscopic theory, the parameters relate to scales from this theory and the mechanisms that originated
this particle. There is only a range in the parameter space where the ALPs behave like DM, and that also gives
an interesting modification of structure formation. This happens for masses around m ∼ 10−22 − 10−20 eV,
which is similar to the range of masses for the FDM model.

But this relativistic action could also be phenomenological that allows the coupling to have a different sign
and values, different from the axion case. We are going to see soon that the attractive and repulsive interactions
yield different phenomenologies, with the repulsive allowing for much bigger collapse cores.

In this section we are going to explore the cosmological consequences of this relativistic action, and after go
to the non-relativistic regime to study the structure formation in the FDM and SIFDM models and describe the
condensate formed in the center of the galaxy. To explore cosmological evolution, we are first going to study the
concrete case where this action is the action for the ALPs. We also comment a little on the case of axion. This
is very useful since in this case when we have a microscopic theory, we can identify the scale of the parameter
and their relations, determine the initial conditions and the DM abundance.

4.1.1 Formation: ALPs

We are going to briefly describe here the formation mechanism for ALPs (see (Marsh 2016) for a more complete
description).

An ALP is a pseudo-Nambu Goldstone resulting from the spontaneous symmetry breaking of a global U(1)
symmetry described by the complex scalar field

Ψ = veiφ/fa , (94)

30 Even the axion has a thermal production channel, if the axion is in contact with the thermal bath, with this axion being hot
and contributing to a fraction of the effective number of neutrinos (see (Marsh 2016) for a review on that topic).
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where fa is the scale of the spontaneous symmetry breaking and θa = φ/fa is the misalignment angle. In the
case of the QCD axion, the symmetry broken is the chiral global U(1)PQ, the Peccei-Quinn symmetry, and
the introduction of this Goldstone boson solves the strong CP problem. When the symmetry is broken, the
massive radial component v is fixed at the vacuum expectation value (vev), v0,ssb = fa/

√
2, making the radial

field non-dynamical while there is a continuous set of minima with the ground state given by Ψ = v0,ssbe
iθa ,

corresponding to all the possible phases in the circle (if the reader wants to refresh the memory on SSB, see
Section 3.3.1 and the box that refers to SSB in that section). The pseudo-Goldstone boson φ is invariant under
shift-symmetry, inherited from the U(1) symmetry of the complex scalar field.

However, non-perturbative effects, coming from string theory models or from instatons in the case of the
axion, can induce a potential that break the shift symmetry explicitly, although softly, which leads to a residual
discrete symmetry. This potential gives a small mass to the ALPs, and has the form:

V (φ) = Λ4
a

[
1− cos

(
φ

fa

)]
, (95)

where Λ4
a is the scale of spontaneous symmetry breaking31. This potential is not unique and the overall constant

added was chosen arbitrarily. For small field values φ� fa, this potential can be expanded into,

V (φ) =
1

2
m2φ2 +

g

4!
φ4 + · · · , (96)

where m = Λ2
a/fa and g = −Λ4

a/f
4
a < 0. Since the spontaneous symmetry breaking scale fa is usually much

higher than the explicit symmetry breaking scale Λa, the mass is usually very small, with the self-interaction
coupling g even smaller. For the QCD case, ΛQCD ∼ 200 MeV (Marsh 2016), and 109 GeV . fa . 1017 GeV
coming from astrophysical constraints, then we can see that 10−10 eV . mQCD . 10−2 eV. For string theory
models, there is a variety of cases, but typically Λst & TSUSY.

Although very small, given the approximate shift-symmetry, the ALPs mass is protected against radiative
corrections, and interactions with the standard model are suppressed by powers of fa.

For the case of the QCD axion, the mass generated by the non-perturbative QCD effects has a time depen-
dence that scales with the power law of the temperature. For a discussion about that, see (Marsh 2016).

Given all that, the action for the ALP is given exactly by the action (93) (usually the self-interaction is
omitted since this is suppressed by powers of f3

a ).

4.1.2 Cosmological evolution

Having established that there is a microscopic theory where the action (93) can come from, we are going to
study the cosmology in the general case, which describes any model in the FDM and SIFDM classes. If we
ignore the small interaction, this model corresponds to the FDM class. In the presence of interaction this model
corresponds the SIFDM class, where the interaction can be attractive or repulsive, while in the case of ALPs
and axions it can only be attractive (g < 0).

We are going to focus only in the matter sector now and omit the Einstein Hilbert action (which gives GR,
the background theory where our field evolves). The action we are going to work with is:

Sφ =

∫
d4x
√−g

[
1

2
gµν∂µφ∂νφ− V (φ)

]
, (97)

where the potential can be given by only the mass term, describing the FDM, or both the mass and the
interaction, describing SIFDM.

We can study the evolution of this field in a flat Friedmann-Robertson-Walker background (FRW) back-
ground, given by the metric ds2 = dt2− a2(t)dx2, where a(t) is the scale factor. The equation of motion for the
ALP is given by:

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (98)

where H = ȧ/a is the Hubble parameter. The cosmological evolution is going to depend on the competition
between the potential term and the Hubble friction term. Lets consider the case of the FDM, where V (φ) =
(1/2)m2φ2 to illustrate the cosmological evolution. The background evolution of this field proceeds in the
following way. In the early universe, H � m, the Hubble friction dominates and the solution is a constant given
by the initial conditions φearly = φ(ti). In the case of the ALP, this initial condition is known and given by the
formation of the ALP with φi = faθa(ti) = faθi. At early times the ULDM is subdominant and has equation of
state w = −1 behaving like dark energy. As the universe expands, the Hubble parameter becomes smaller and

31 A similar mechanism that generates a dynamical DE component at late times in the context of the DM superfluid model can
be seen in (Ferreira et al. 2019), presented also briefly in Section 4.4.2 of this review.
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smaller, until a point where it is smaller than the mass of the field H � m. The solution of the equation in this
case is oscillatory. As the field oscillates, the equation of state also oscillates around zero, giving an averaged
out equation of state of a dust like component w = 0. In this limit the field behaves like DM and the energy
density evolves as ρ = ρ(a(t∗)) (a(t∗)/a)3, where t∗ is the time when H(t∗) ∼ m.

We can already see that the lower the mass is, more and more will take until the Hubble parameter to
become smaller than the mass, prolonging the early period where the field behaves as dark energy. For higher
masses, the FDM behaves like DM earlier in the history of the universe. Therefore, the mass completely controls
when the period of DM domination starts.

In the case of ALP, for them to behave like all the DM of the universe, it has to start oscillating before
matter-radiation equality, which gives m > 10−28 eV ∼ H(aeq). However, not all of this regime the ALP as DM
presents interesting phenomenological consequences for structures, since for heavier masses, ALP behaves closer
and closer to CDM. We are going to see this in more details later, but the sweet spot in mass for the ALP to
have this distinct regime on small scales is m ∼ 10−22 − 10−20 eV.

To obtain the full solution of (98), one need to solve this equation coupled to the Friedman equation that de-
scribes the evolution of the scalar factor according to the components of the universe:
H2 = (1/Mpl) (ρφ + ρr + ρb + ρΛ), where the contributions in the energy density come from the FDM or
SIFDM, radiation, baryons and cosmological constant, respectively. The energy density and pressure of this
scalar particle is given by:

ρφ =
1

2
φ̇2 + V (φ) , pφ =

1

2
φ̇2 − V (φ) , (99)

where in the case that the field is oscillating, can be averaged over time. In the case of the FDM, we can take
a(t) ∝ tp, which is valid for the period of radiation and matter dominations, and we have:

φ(t) = a−3/2

(
t

ti

)1/2

[C1 Jn(mt) + C2 Yn(mt)] , (100)

where C1,2 are determined by the initial conditions, n = (3p− 2)/2 and Jn and Yn are the Bessel functions of
first and second kind.

We can then compute the relic density of FDM, which is the energy density of those particles today. For the
case where FDM is the ALP and behaves like DM, and all the DM is made of ALPs, the density fraction is:

ΩALP ∼
1

6
(9Ωr)

3/4
( m
H0

)1/2
(
φi
mpl

)2

. (101)

The initial value of the field displacement determines the relic density of ALPs, and in order to have the DM
density observed today, the initial value of the field must be φi > 1014 GeV for the masses of the ALP that
correspond to DM behaviour. A similar calculation can be made for the axion and this can be found in (Marsh
2016).

With that we saw that we have 2 scales that are important for the DM ALPs: fa the spontaneous symmetry
breaking scale that determines the initial conditions of the ALPs, and Λa the scale of explicit breaking that
determines the mass given the previous scale. The the temperature T∗ associated with t∗, the time when the
the field starts to oscillate and behave like DM, is set after the mass is determined. This is similar in the case
of the FDM, where the only one degree of freedom m, although the initial condition φi can be unknown. If one
assumes the FDM is described by an ALP, then the initial condition is determined.

In the case of the SIFDM, we have an extra parameter in comparison to the FDM, the interaction strength.
The interaction term acts as a pressure term in the equation of motion (98). This pressure can be attractive or
repulsive. There is then a competition between the Hubble friction, the mass and the pressure. We are going to
study more about these effects in the next section.

Cosmological perturbations: We have studied the background evolution and now we need to study the
cosmological perturbations. This is important in order for us to study the cosmological consequences of this
scenario that can be tested with cosmological observations. We are not going to present here an extensive
description, but a summary of the most important results. Notice that like for the cosmological evolution, the
procedure here is general for any FDM or SIFDM.

First, we perturb the scalar field and the metric into small perturbations on top of the background values:

gµν(x, t) = g(0)
µν (t) + δgµν(x, t) , φ(x, t) = φ0(t) + δφ(x, t) , (102)

where the 0 indicates the background quantities. We are only going to be interested in the scalar perturbations,
in this review. We are going to work on conformal time η defined as dη = dt/a. The perturbed metric for the
scalar metric perturbations is described by 4 functions (following the convention from (Mukhanov 2005))

ds2 = a2(η)
{

(1 + 2Φ) dη2 + 2B,i dηdx
i + [(1− 2Φ) δij − 2E,ij ] dx

idxj
}
. (103)
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When doing perturbation theory in general relativity, due to gauge invariance, new degrees of freedom that are
fictitious and not physical might be introduced.One of the procedures to deal with this is to fix a gauge, which
fixes these spurious variables. There are many ways of doing that which leads to the many possible gauges.
The final physics given by all these gauges is the same, but each gauge offers a better description of different
phenomena. The Newtonian gauge (E = 0 and B = 0) is useful in the Newtonian limit. One can also choose
the comoving gauge (B = 0 and v = 0), where v is the velocity of the matter fluid We are going to use both
gauges whenever they are useful.

After a gauge is chosen, one substitutes the perturbations in the action (97), ignoring the interaction for
simplicity, to obtain the second order action for the perturbations. And from that one can obtain the equation
of motion for the axion perturbation.

We can also re-write the perturbations in terms of the fluid variables: ρφ = ρφ, 0+δρ and pφ = pφ, 0+δp. From
(99), we can identify the perturbations in the fluid variables with the ones of the scalar field and metric (Hwang
and Noh 2009)

δρ = 〈φ̇0
˙δφ− φ̇2

0Φ+m2φ0δφ〉 , δp = 〈φ̇0
˙δφ− φ̇2

0Φ−m2φ0δφ〉 , a(ρ+ p)v = k〈φ̇0
˙δφ〉 . (104)

where we have taken the Fourier transform of the fields with k denotes the wavenumber, and the background
pressure and energy density are averaged.

We are interesting in obtaining the sound speed of the FDM particle. We showed before that the FDM
behaves like dark matter at the background level, but we also need to show that the sound speed is small as
expected for dust. This different sound speed is going to give a different Jeans scale and give a different structure
formation for this model. Since we are interested in calculating the sound speed, we are going to work in the
comoving gauge. In that gauge the equations, assuming the averaged background equation of state (which is
zero), for the scalar perturbations of the metric and fluid simplify and can be combined to give

δ̈ + 2Hδ̇ − 4πGρ δ +
k2

a2

δp

ρ
= δ̈ + 2Hδ̇ +

(
k2

a2
c2s − 4πGρ

)
δ = 0 , (105)

where δ = δρ/ρ is the density contrast and ω2
k = k2

a2 c
2
s − 4πGρ is the dispersion relation.

By definition, the sound speed is defined as the term that accompanies the gradient, the term with k2. To
obtain the expression for the sound speed, we need to compute the perturbation of the pressure δp. For that,
make the simple procedure from (Hwang and Noh 2009), where we assume an ansatz for the field perturbation,
δφ(x, t) = δφ+(x, t) sin(mt) + δφ−(x, t) cos(mt) and substitute that in (104). Ths gives us δp, and the sound
speed can be written as:

c2s =
k2

4m2a2

(
1

1 + k2

4m2a2

)
. (106)

This is the (relativistic) sound speed of our FDM fluid. It is valid outside the Hubble horizon and inside. For
sub-Hubble horizon modes, when k/(ma)� 1 the sound speed becomes:

c2s −−−−−−→
k/ma�1

c2s, n =
k2

4m2a2
. (107)

This corresponds to sound speed that can be obtained in the non-relativistic Newtonian theory, as we will see
in the next section.

There are two competing terms in equation (105) which are the terms inside the dispersion relation. The
scale kJ for which ωk(kJ) = 0 separates the regimes where each of those terms dominates in the equation. We
can also write this in terms of λJ = 2πa/kJ , the Jeans length. For modes with λ < λJ the dispersion relation is
negative, and the solution of (105) is that the perturbations oscillate. While when λ > λJ perturbations grow.
So there is only gravitational instability for the modes that are outside the Jeans length. In a theory of DM
with a finite Jeans length, the growth of perturbations will be suppressed for scales smaller than λJ. That is
exactly the effect the small mass if the ULDM models has. This leads to important cosmological consequences
for these models.

4.1.3 Evolution on small scales

We have finally reached the section where we are going to describe the behaviour of the FDM and of the SIFDM
on small scales. It is this different behaviour that s used to classify the models into different classes.

The action that describes the SIFDM and the FDM is (93). We are interested in studying the behaviour
of DM in galaxies, so we are on sub-Hubble scales. In this limit, H � m and the field is oscillating fast and
behaving as DM. Inside the Hubble horizon and for the small velocities we have in galaxies (vvir � c), we are
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in the non-relativistic limit of our theory. In the Newtonian gauge, the limit where B = 0 and E = 0 in (103),
and with no anisotropic stress Φ = Ψ , we can write the action for the ULDM field (Niemeyer 2019):

Sφ =

∫
d4x a3

[
1

2
(1− 4Φ) φ̇2 − 1

a2
(∂iφ)2 − (1− 2Φ)V (φ)

]
. (108)

Since in the non-relativistic limit the field varies slowly, the fast oscillations that we had for the field can be
factored and we can re-write the field as:

φ =
1√

2ma3

(
ψ e−imt + ψ∗ eimt

)
. (109)

With the field in this form and assuming the ψ̇ � mψ, we have the total non-relativistic action, nicludnig the
Einstein Hilbert action, that describes this theory given by (Chavanis 2011, 2018)

S =

∫
d4x

[
i

2
(ψ∂tψ

∗ − ψ∗∂tψ)− |∇ψ|
2

2m
− g

16m2
|ψ|4 −m(ψψ∗ − 〈ψψ∗〉)Φ− a

8πG
(∂iΦ)2

]
. (110)

The equations of motion of the action yield the Schödinger- Poisson system of equations:

iψ̇ = −3

2
iHψ − 1

2ma2
∇2ψ +

g

8m2
|ψ|2ψ +mΦψ , (111)

∇2Φ = 4πG (ρ− ρ̄) . (112)

If we consider time scales much smaller than the expansion, we can ignore expansion of the universe and write
the equation of our system as:

iψ̇ = − 1

2m
∇2ψ +

g

8m2
|ψ|2ψ +mΦψ . (113)

This is the non-linear Schrödinger equation. The gravitational potential term can be re-written in the form
−Gm2ψ

∫
d3x

′ |ψ(x
′
)|2/|x − x

′ |. This non-linear equation is the Gross–Pitaesvkii equation described in the
previous section and describes the evolution of a wavefunction or a field. We can use this equation to analyze
the properties of this system, analytically and numerically.

Fuzzy DM vs SIFDMiψ̇ = − 1

2m
∇2ψ +mΦψ +

g

8m2
|ψ|2ψ +

g3

12m3
|ψ|4ψ + · · ·

∇2Φ = 4πG (ρ− ρ̄)
=⇒

{
gi = 0 Fuzzy DM

gi 6= 0 SIFDM

We can also rewrite the field theory above as a set of hydrodynamical-like equations, in this long wavelength
limit. For that, if we identify (using the theory in the presence of expansion):

ψ ≡
√
ρ

m
eiθ , v ≡ 1

am
∇θ =

1

2ima

(
1

ψ
∇ψ − 1

ψ∗
∇ψ∗

)
. (114)

The vorticity of the superfluid is zero and the momentum density has non-zero curl. The comoving equations
of motion for ψ are:

ρ̇+ 3Hρ+
1

a
∇ · (ρv) = 0 , (115)

v̇ +Hv +
1

a
(v · ∇) v = −1

a
∇Φ+

∇Pint

ρ
+

1

2a3m2
∇
(∇2√ρ
√
ρ

)
. (116)

These set of equations are the Mandelung equations, generalized for an expanding universe. The second term
in the right hand side of equation (116) comes from the self-interaction term, where Pint is the pressure from
the interactions. The last term of the second equation is the quantum pressure. This is present even in the
absence of interaction and it is going to be important for the effects and formation of the condensate for the
FDM model. The quantum pressure has the role of not allowing the FDM to cluster and collapse, which also
makes the density of this collapsed region to have a finite value. In this way, this model has naturally a cored
profile inside the condensate region, addressing the cusp-core problem. This form of the equations is useful for
numerical simulations that can reveal some properties of the DM scalar field. However, as we can see from the
quantum pressure term, these equations are not defined for ρ = 0.
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The quantum pressure term is present in the ULDM models and it is not present in other candidates of DM.
As we discussed above, the behaviour of FDM or SIFDM in each regime depends on a competition between the
gravity, the pressure term and the quantum pressure. We can roughly say that then the non-CDM behaviour
expected for our models will take place on scales where the quantum pressure term dominates. The sign and size
of the interaction might affect this a lot. A naive estimate of this effect is that the scales where this quantum
pressure term matters is for scales smaller than the de Broglie wavelength of the particle, λ < λdB. The de
Broglie wavelength for a typical MW like galaxy is given by

λdB ' 0.2
( m

10−22 eV

)−1
(
V200

v

)
kpc , (117)

where we used the virial velocity (91). For a particle with m = 10−22 eV, this would mean that the wave-like
behaviour of the ULDM particles would be relevant in a MW like galaxy on scales smaller than 0.2 kpc. If we
consider dwarf galaxies, for example, where virial velocities are much smaller vdw

vir ∼ 10 km/s, these non-CDM
effects would take place on scales of order of their halo size. For scales λ > λdB, the quantum pressure term is
not important anymore and the particles behave like free particles, in a CDM like way32.

This scale where the condensate behaviour becomes important is called the coherent length. We are going
to show now a more precise determination of this coherent length in both the FDM and SIFDM. And together
with this analysis, it is going to be possible to better understand what is going on in the center of halos that
drives this non-CDM behaviour.

4.1.4 Description of the condensate

Now that we have our description of the FDM and SIFDM on small scales, we want to understand what takes
place inside the halos, where the Schödinger-Poisson equations describes the evolution of the system. We want
to describe here what is the picture we have in mind for what happens on those small scales.

The special feature of the ULDM models is that they present a non-CDM behaviour in galaxies. As we saw
in the previous section, the ULDM has a cosmological evolution very close to CDM for large scales. Different
than in CDM, the ULDM has a non-zero Jeans length showing that on small scales this component is going
to behave differently than CDM. Therefore, outside galaxies, ULDM behaves like CDM but with a suppressed
power spectrum, and inside galaxies, in those homogeneous sub-Jeans scales ULDM can have a non-CDM
behaviour.

Inside these homogenous sub-Jeans regions inside galaxies, the ULDM thermalizes and forms gravitationally
bound compact objects, called Bose stars or solitons, where a Bose Einstein condensation or superfluid is formed.
This was described in many references in the literature (Lee and Pang 1992; Jetzer 1992; Kolb and Tkachev
1993; Guth et al. 2015; Semikoz and Tkachev 1997; Khlebnikov 2000; Sikivie and Yang 2009; Erken et al. 2012),
both in the presence and in the absence of interactions. The coherence length of this condensate sets the region
where the wave behaviour of the condensate is important and changes the dynamics. Outside the condensate,
on scales larger than the coherent length, the ULDM behaves as particles following the particle description as
CDM (decoupled axion following (Sikivie and Yang 2009)), with different initial conditions than in CDM.

There have been many studies of the properties of these condensed gravitationally bounded objects, in
particular in the context of axions (Ruffini and Bonazzola 1969; Chavanis 2011; Barranco and Bernal 2011; Eby
et al. 2019, 2016a, 2015, 2016b; Cha ????; Braaten et al. 2016; Visinelli et al. 2018). In this section we are going
to study the thermalization and formation of these compact objects both in the context of FDM, but also in
the context of the SIFDM. It is interesting to see that the size and phenomena, BEC or superfluidity, described
by each of these models can differ a lot in each case, and in the case of the SIFDM it differs with the sign of
the self-interaction.

The formation process of this Bose Einstein condensate by gravitational interaction in the center of halos or in
axion miniclusters is shown to take place in our universe, with relaxation times dominated by faster gravitational
relaxation time, which is smaller than the age of the universe (Semikoz and Tkachev 1997; Khlebnikov 2000;
Sikivie and Yang 2009; Schive et al. 2014a; Levkov et al. 2018; Kirkpatrick et al. 2020). We are going to show
here we can describe this formation of the condensate and obtain the relaxation times in the case of the FDM
and the SIFDM.

Summarizing, the picture that we have to have in mind is shown in Figure 10. Inside the halos of galaxies,
a condensate core is formed33. These Bose clumps are called solitons or Bose stars. This is also the picture that
we have for the DM superfluid model, presented in Section 4.2.

32 Here, when I say that is has a CDM like behaviour, I mean it behaves like a free particle and not like a condensate. Therefore,
it follows the hydrodynamical description of CDM. They can have the same type of behaviour like CDM and be described by
the same equations, but ULDM have different initial conditions and, for small mass describing DE after equality, can modify the
expansion.
33 The picture described here is not the same as described in the entire literature. We are going to discuss this in Section 4.1.3.
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Fig. 10 Schematic figure of the behaviour of ULDM in galaxies, where a condensate core is expected to form in the inner parts of
the galaxy, while DM behaves like normal DM in the outskirts or outside galaxies.

As we saw from the description of the ULDM given above, we are describing the theory purely classically.
It is valid then to ask if our ULDM can be treated as a classical theory or not. Specially since this model has
such small masses.

Classicality is an emergent concept that can be applied for system that are composed by a large number
of constituents. In this limit, the quantum effects of the theory are suppressed by this macroscopic number of
particles, and the theory can be described by a classical theory. In this way, there is a limit where this classical
approximation breaks and the quantum effects become important.

Lets first talk about what happens in the halo. When taking the classical limit of a theory, we can think
that we decompose our quantum field ψ̂ into

ψ̂ = ψ + δψ̂ , (118)

where 〈ψ̂〉 = ψ is the classical field (since if it was quantum this expectation value would be zero) and δψ̂ are the
quantum corrections on top of the classical field. These quantum correction are suppressed by large occupancy
number of the states, and for a coherent state is given by: δψ̂/ψ ∝ 1/N . Therefore, if we are in a system with a
large number of quantum constituents, the quantum corrections can be neglected and the system can be treated
as classical. And this classical field is going to obey classical equations. This is, very roughly since this can be
made much more precise mathematically, the definition of a classical field. On top of that it is a condensate,
there is a large occupation number of the ground state, so N = N0.

We can then estimate the occupancy number that we have in a halo. If we consider a MW-like galaxy, and
we take as an example the axion, then the number density of axions in the galaxy is:

ngal =
ρgal

m
≈ GeV/cm

3

10−5 eV
. (119)

Since we can write the occupation number roughly as N ∼ nλ3
dB, given the de Broglie wavelength of an axion

with mass m ∼ 10−5 eV, we have that in a galaxy N ∼ 1046. This shows that in galaxies today, this ultra-light
particle has a huge occupancy number and we can consider a classical evolution. We can extend this estimation
for earlier times, if we assume the QCD axion where the potential arises from non-perturbative effects on scales
ΛQCD. For those axions, the energy density (assuming they are most or all the DM in the universe) is given by
na ∼ ρa/m ∼ (Teq/TQCD) ρtot ∼ TeqT

3
QCD/m. The de Broglie wavelength can be estimated to be at most of the

size of the Hubble horizon at that time λ ∼ H−1
QCD ∼ T 2

QCD/Mpl. This yields an even larger occupation number

N ∼ 1061.
If you start your theory with a classical scalar field described by classical equations of motion, then this

description is valid for almost all the evolution of the universe (early times might require quantum treatment
tough), specially the cosmological times we are considering. So it is a good description for the evolution of the
ULDM34.

As we saw in Section 3, in the classical limit, we can describe the properties of the (classical) condensate
using a classical theory. And that is what we are going to do here. In the classical point of view, the condensate
formed is going to be described by a slowly varying in space, homogeneous and stable field that presents

34 There is one subtly here that there might be effects on local systems that can deplete the condensate and break coherence. I
will discuss that in Section 4.1.3.
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long-range correlation (Guth et al. 2015). In the case of FDM and SIFDM, condensation takes place in the
presence of gravity, and of both gravity and self-interactions in the case of SIFDM. So we need to show how this
gravitational thermalization takes place. We are going to describe these condensates, showing their size, given
by their correlations length, and the condensate solution using linear theory.

SIFDM

We are first going to treat the SIFDM model, which is described by the presence of a self-interaction (Chavanis
2011; Guth et al. 2015; Chavanis 2018, 2016). We specialize here to the two-body interaction, since higher order
interaction are usually suppressed in low-energy systems like the one we are interested. But it is easy to generalize
this for higher order interactions. From what we saw in the previous section, the theory of a self-interacting
condensate describes a superfluid in certain regimes. We are going to see here for which conditions this occurs
in the SIFDM model.

We are going to work in the limit where we ignore gravity in order to investigate the effect of the self
interaction in the model in a very similar way as described in Sect. 3.3. The Schrödinger equation that describes
model is given by:

iψ̇ = − 1

2m
∇2ψ +

g

8m2
|ψ|2ψ . (120)

We decompose the field into a homogeneous background solution, which represents the condensate, plus a
perturbation part: ψ(x, t) = ψc(t) + δΨ̄(x, t). The condensate part satisfies the Gross–Pitaevskii equation,

iψ̇c =
g

8m2
|ψ0|2ψc , (121)

that has a simple periodic solution ψc(t) = ψ0 e
−iµct, where |ψ0|2 = n0 is the number density of particles that

fixes the amplitude of ψ0, and µc = gn0/8m
2.

The equation describing the evolution of the perturbation, making the field redefinition δΨ̄ = ψcδΨ , is

iδΨ = − 1

2m
∇2δΨ +

gn0

8m2
(δΨ + δΨ∗) . (122)

Since δΨ is a complex scalar field, we can decompose the field into a real and a imaginary parts, Ψ = A+ iB. We
want to determine the dispersion relation of this system, so we write the equation of motion in Fourier space:

d

dt

(
Ak
Bk

)
=

(
0 k2

2m

− k2

2m −
gn0

4m2 0

)(
Ak
Bk

)
, (123)

where we call ζk = k2/2m+ gn0/4m
2. The dispersion relation is given by:

ω2
k =

gn0

4m2

k2

2m
+

k4

4m2
. (124)

We an see that for ω2
k > 0 we have an oscillatory solution:

δΨk = Z (ωk + ζk) eiωkt + Z∗ (ωk − ζk) e−iωkt , (125)

where Z is an arbitrary complex parameter. When ω2
k < 0, the solution of the equation for δΨk is given by

exponentials,
δΨk = c1 (γk − iζk) eγkt + c2 (γk + iζk) e−γkt , (126)

where γk = (k/
√

2m)
√−ζk are the eigenvalues of the matrix, and c1 and c2 are constants given by the initial

conditions.
The regimes where the dispersion relation is positive or negative are separated by the modes with wavenum-

ber,

ω2
k = 0 =⇒ k2

∗ = −g n0

2m
, (127)

from where we can also determine the wavelength λ∗ = 2π/k∗ that divides these regimes. This wavelength is
proportional to the healing length calculated in the previous sections. However, can see from this scale that
what is actually going to determine if we have a stable oscillatory solution or a exponentially growing instability
is the sign of the interaction.

For a repulsive interaction, g > 0, the homogeneous configuration is always stable, and it is always going
to be described by an oscillatory solution, either if λ is bigger or smaller than λ∗ . This means that for all
wavelength we can have a stable solution that can describe a condensate. From the dispersion relation we can
also see that, in the long wavelength regime

ωk ' csk , (128)



50 Elisa G. M. Ferreira

which is the dispersion relation of the phonon, that propagates as a wave, mediating long range correlation.
This means that the SIFDM with a repulsive interaction is a superfluid, with the theory fully described by this
propagating phonon. On the other hand, for very small wavelengths, large k, the term ωk = k2/2m dominates,
which is the dispersion relation of a free massive particle, and the system stops exhibiting superfluidity. In the
intermediary regime, where we should consider both terms of the dispersion relation, and the theory described
by two degrees of freedom the phonon and the massive particle associated to particle creation away from the
condensate. The scales that determine what we mean by long-wavelength regime is where λ� λ∗ in a way that
the linear term dominates the dispersion relation. Since λ∗ is proportional to the healing length, this condition
for the long-wavelengths is equivalent to the condition in Sect. 3.3 that the healing length gives us the scale
where quantum pressure (QP) can be neglected, which is what we are describing here.

When we have an attractive interaction, given by g < 0 we have two regimes of stability. For k < k∗
(λ > λ∗) we have exponential growing solutions, which means that perturbations grow parametrically. Given
this instability, the condensate cannot be formed on these scales. For k > k∗ (λ < λ∗), the solution oscillates
and is stable, forming a condensate. This stable configuration, however, is different than in the case for repulsive
interaction, forming a localized object, with maximum size given by λ∗. This localized stable solutions are called
soliton. Therefore it makes sense that this is the healing scale is the scale of the stability, since this is the scale
below which the interaction “heals” perturbations of the condensate.

g > 0 −→ ∀λ Solution oscillates. Condensate (long range)

g < 0 −→
{
λ > λ∗ Structures grow. No condensate.
λ < λ∗ Solution oscillates. Condensate (finite size)

The case of the attractive interaction is not a superfluid even in the stable localized regions, the solitons.
The only stable regions are for λ < λ∗ and this is the regime where the linear term is always subdominant in
the the dispersion relation. The long-wavelength regions in this case are the regions where instability happens
and there is no formation of a condensate.

Condensate solution - Having studied the stability of the system and determined the regimes where we
have stable and unstable solutions, we can now describe the background solution for each case. As we saw in
the “condensate solution” part of Sect. 3.3, one possible solution for the weakly interacting BEC is given by the
solitons. For repulsive interactions the condensate solution is a dark soliton, while for a attractive interaction
one has a bright soliton.

What is important is that for the repulsive interaction we can create a condensate of any size desired. So
the size of the condensate is not limited and it will depend only on the choice of mass and strength of the
interaction. For the case of attractive interaction, we can only have localized stable solutions, giving a finite size
bright soliton, with maximum size λ∗ = 2π

√
2m/|g|n0. Therefore we can see that we could only have a soliton,

for an attractive interaction, that is relevant on galactic scales if the mass is very small but with a not very
small coupling. An interplay between these two parameters need to occurs then if one wants galactic sized λ∗.

This condition also shows us that the QCD axion is not a good candidate for a ULDM (at least not to
represent most of the ULDM, but it can still represent a fraction of DM). For the QCD axion the interaction,
given by ga = −Λ4/f4

a is negative, and it is extremely small with ga ∼ −10−48, because Λ ∼ 0.1 GeV, for the
typical QCD scale, and fa ∼ 1011 GeV, for typical Peccei-Quinn scale. Given that the mass of the axion is
approximately m ∼ 10−5 eV, the soliton length, for n0 ∼ ngal, is λs ∼ 2.8 × 1011 km ∼ 9 × 10−6 kpc. This is
much smaller than any galactic scales, which are of the order of tens to hundreds of kpc. The QCD axion, then,
produces these small and localized clumps of axions.

Occupancy number evolution - With those solutions in hand, we can understand how the evolution of the
occupancy number for the condensate will behave for each mode. Determining the evolution of the occupation
number is very important since having high occupancy number of the ground state of the system it what is
actually the definition of a condensate. And this definition is independent of the system described, representing
the best way of showing that condensation took place. This is given by: N = |ψk|2/V , where ψk is constructed
from the exponential and oscillatory solutions described above, with a random phase. The average occupation
number evolves as:

〈Nk(t)〉 = 〈Nk(ti)〉
{

1 + 1
2γ2

k

(
gn0

4m2

)
sinh2 [γk (t− ti)]

}
, for ω2

k < 0

〈Nk(t)〉 = 〈Nk(ti)〉
{

1 + 1
2ω2

k

(
gn0

4m2

)
sin2 [ωk (t− ti)]

}
, for ω2

k > 0
(129)

For g > 0, an repulsive interaction, γk is imaginary, with γk = iωk, so the occupation number oscillates and
the oscillations are stable. The ratio 〈Nk(t)〉/〈Nk(ti)〉 which has the largest value is obtained for modes that
minimize ωk, which are the modes with k → 0. These are the longest wavelengths. Since the long wavelength
dominates, this means that long range correlation is present, and we can have a long range condensate.
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For g < 0,the occupation number grows exponentially. The fastest growth is given by the modes k = k∗ that
maximize γk. So the modes k > k∗ or λ < λ∗, where ∗ denotes the characteristic scale where instability sets in,
will dominate and the stable configuration of the system will be localized clumps. The size of these clumps will
be given by the mass and interaction of the model.

FDM: only gravity

We are now going to describe a model without interaction, where the ultra-light particles are under the
influence of the gravitational potential. We can think that gravitational potential has the same effect as an
attractive interaction, in a way that quantum pressure has to counter-act the gravitational collapse. This gives
a good picture to what to expect, from the knowledge obtained for the SIFDM. However, one needs to remember
that the FDM model is described by a non-interacting theory, which means that it condenses into a BEC, but
does not exhibit superfluidity in any regime.

The Schrödinger equation for DM in a gravitational potential, in the absence of interaction, is,

iψ̇ = − 1

2m
∇2ψ +mΦψ , (130)

which is coupled to the Poisson equation:

∇2Φ = 4πG
(
m|ψ|2 − ρ̄

)
, (131)

where the average background density, ρ̄, was subtracted. Expanding the field as done previously ψ(x, t) =
ψc(t) + δΨ(x, t), the equation for the condensate is trivial and ψc = ψ0 = const.. For the fluctuations we can
write the linearized systems of equations that govern the evolution of the perturbation:

i ˙δΨ = − 1

2m
∇2δΨ +mΦ , (132)

∇2Φ = 4πGmn0 (δΨ + δΨ∗) . (133)

These can be combined into the equation:

i ˙δΨ = − 1

2m
∇2δΨ + 4πGm2n0∇−2 (δΨ + δΨ∗) . (134)

One can notice that the equation above is very similar to the equation we had for the interacting case (122) for
an attractive interaction. With that, we expect that there is an instability for long wavelengths, and that the
condensate stable solution is only given for a finite region, forming a localized core. To determine this lets take
the Fourier transform of the fields. Like in the interacting case, the instability is divided by the regimes where
the dispersion relation is smaller or bigger than zero. For the parameters of the FDM, we can determine the
wavenumber that separates the regimes as:

ω̃2
k = 0 , =⇒ kJ =

(
16πGm3n0

)1/4
. (135)

This scale is the Jeans scale and it separates the regimes where gravity dominates and collapse happens (k < kJ),
and the regime where the quantum pressure dominates and the solution is stable and oscillates (k > kJ). In
this regime we can have a condensate. The quantum pressure term counteracts the gravitational attraction and
any attempt to localize the particle is accompanied by an increase in energy. So stability below the Jeans scale
arises because of the uncertainty principle.

{
λ > λJ Structures grow. No condensate.
λ < λJ QP dominates, solution oscillates. Condensate (finite size)

We can estimate the size of the coherent condensate core. Rewriting the Jeans wavelength as:

λJ =
2π

kJ
=
π3/4

2
(Gρ)

−1/4
m−1/2 = 94.5

( m

10−22eV

)−1/2
(

ρ

ρcrit

)−1/4(
Ωmh

2

0.12

)−1/4

kpc , (136)

where ρcrit is the critical density. For fuzzy DM in an overdense region ρ = 106 ρcrit,

Fuzzy DM: m ∼ 10−22 eV −→ λFDMJ ∼ 3 kpc , (137)

forming a condensate that is of the order of the scales of the halo of galaxies. As we can see, for a MW-like
galaxy, this core formed is smaller than the halo. So we expect that in the outskirts of the halo the DM is not
going to be condensed and is going to behave like normal matter, with the profile following the NFW profile.
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For the QCD axion, if we assume that we can have an axion without interaction, λJ ∼ 1.7× 10−7 kpc, which is
a very small scale in comparison to galaxies. This stable bound system is called a Bose star.

Adding the expansion of the universe, we can see that the system of equations becomes

i

a3/2
∂t

(
a3/2ψ

)
= − 1

2m

∇2ψ

a2
+mΦψ , (138)

∇2Φ = 4πGa2
(
m|ψ|2 − ρ̄

)
. (139)

Like before, we determine the linearized equations for the perturbations δΨ around the coherent homogeneous
background that evolves as ψc ∝ a−3/2. The equation that describes the evolution of the perturbation then is

i ˙δΨk = − k2

2ma2
δΨk −

3

2
mΩa

H2a2

k2
(δΨk + δΨ∗k ) , (140)

where Ωa = mn0/ρtot is the density parameter of our FDM particles. The real part of the perturbations obeys
the following equation:

Äk + 2HȦk −
3

2
ΩaH

2Ak +

(
k2

2ma2

)2

Ak = 0 . (141)

All the terms in this equation would also be present from a massive DM component like CDM, except for the
last term, which is related to the quantum pressure. The Jeans length in this case is given by:

kJ

a
= (6Ωa)

1/4
√
Hm. (142)

This stability analysis shows us that if we want to construct a ULDM model with the desired feature of
having a condensate in galactic scales, for the FDM model we need to have a very small mass, of the order of
m ∼ 10−22 eV. This mass is within the bounds we had obtained earlier for all the ULDM models. For the FDM
model the only parameter that controls the size of the condensate is the mass. We need then to determine the
mass of the FDM particle for which this model can address the small scale problems, and for which the model is
still in accordance with the very precise cosmological observations. This is what we show in the next subsection.
We are going to put bounds on this parameter according to the observations in galaxies and on large scales.

Condensate solution - The ground state solution for the FDM is called Bose star, and it is a gravitational
bound stable state in 3-dimensions. This can be obtained by minimizing the Hamiltonian that is described by
system with gravity alone, at fixed particle number (N) (Guth et al. 2015). In the absence of a exact solution,
one can have an ansatz for this solution in analogy to the ground state of the hydrogen atom we assume spherical
symmetry and have

ψbs(r) = ψse
−iµst =

√
N k3

bs

π
e−kBSr e−i µst , (143)

which corresponds to the ground state E = −25G2m5N3/512, µs < 0 and where the characteristic wavenumber
of the Bose star is given by:

kbs = 5Gm3N/16 ∼ kJ , (144)

given that N ∼ nbs/k
3
bs. Therefore, the Bose star wavelength coincides with the Jeans length that determines

the core, the stable region with no gravitational collapse.
However, the study of the Bose star solution needs to be done numerically. We are going to see next how

the formation of these Bose stars takes place in kinetic theory. We see the formation of the BEC in these
gravitationally bound structures, having the Bose star, and see how this Bose star grows. We are also going to
discuss the cores formed by other simulations in Section 4.1.4 and in Section 4.3. With those we can determine
the profile, mass and size of the core.

In the case of the SIFDM, we saw that what determines the size of the condensate is the mass and of the
strength of the interactions. Like for the FDM, in order to construct a SIFDM model that addresses the small
scale problems and that are allowed by current observations, we need to put bounds on those parameters. This
model was much less studied than the FDM model. There are a few works that present some bounds on those
parameters (see references in the definition of this class), but with much less constraints than in the FDM case.
This is also understandable since here we have an extra parameter in the model. A more complete analysis for
the bounds of the SIFDM is going to be presented in a future publication and it is being considered by the
authors while this review is being written.
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Initial evolution of the condensate

The picture that we have for the ULDM is that in the interior of galaxies it forms a core where the ULDM
condenses and forms a Bose Einstein condensate, in the case of FDM, and a superfluid, in the case of the SIFDM
(and of the DM superfluid which we will see in the next section). Previously, we have determined the region
where condensation can happen in the halo and calculated the coherence length of the condensate in the case
of FDM and SIFDM, showed that thermalization takes place and condensation can be achieved, calculating the
ground state solution, the soliton or Bose star, for each case.

We want to study if there is the formation of a BEC in the center of galaxies in the presence of gravitational
interactions, on top of the self-interaction in the case of SIFDM. As we saw in Section 3.6, we can describe the
evolution of a BEC using the kinetic equation from wave turbulence. We can use the four wave kinetic equation
to describe the initial stages of evolution of a BEC.

This formalism can be used in the case of ULDM to show that Bose Einstein condensation caused by
gravitational forces indeed happens in the center of halos (and of axion miniclusters). From this theory we can
also obtain a prediction for the condensation time and obtain the properties of the condensate distribution.
This was done in (Levkov et al. 2018) that made this analysis for the FDM model, and showed numerically the
formation of the condensate and growth of the Bose stars, and in (Kirkpatrick et al. 2020) where the role of
interaction was also studied. This is what we are going to show now.

We are going to proceed in the same fashion as in Section 3.6, but with the system subjected to a gravitational
potential. The difference from the previous procedure is that the gravitational interaction is long range, while
in Section 3.6 we studied only the role of short-range interactions.

In galaxies, we are in the regime of high occupation number, and the classical description is valid. For the
system we are considering, p2 � 2mT , therefore for the period where the evolution is going to be described by
this kinetic theory the UV catastrophe is not a problem, and the classical kinetic description of the system is
valid.

In this regime, we can see that this system described by the non-linear Schrödinger equation (113) can be
described in wave turbulence by the classical kinetic equation (83) where the non-linear process is the four-wave
resonant interaction. In the case of the ULDM subjected to gravitational potential, the kinetic equation is given
by:

∂f

∂t
+

p

m
· ∇xf = 2 Im

∫
dy e−ip.y〈ψ(x +

y

2
)ψ∗(x− y

2
)Utot(x +

y

2
)〉 , (145)

where f is the Wigner distribution described by (82) and the potential Utot is given by

Utot(x) = UG + g |ψ(x)|2 = 4πGm

∫
dx′∆−1

x−x′
(
|ψ(x)|2 − n

)
+ g

∫
dx′ δ(x′ − x) |ψ(x)|2 , (146)

and ∆−1
x−x′ is the Green function coming from the Poisson equation

∆−1
x−x′ =

1

4π|x− x′| . (147)

These two equations are equivalent in this limit to the Schrödinger-Poisson system that describes the evolution
of the ULDM field in galaxies. This is the Landau kinetic equation for the gravitating ensemble of random phase
classical waves inside a structure of radius R that in our case of interest is the halo of a galaxy, but it can be
an axion minicluster or a periodic box, in the case of simulations.

To obtain the closed form of this kinetic equation we need to make some assumptions, as detailed in Sec-
tion 3.6. In our case, we are going to assume as a initial distribution Gaussian distributed ULDM particles,
described by a Gaussian random field |ψ̃p|2 = 8π3/2Ñ e−p̃

2

with random phases arg ψ̃p, where ψ = ψ̃v2
0

√
m/G,

p̃ ≡ p/mv0 and v0 is the initial velocity. This initial configuration is the Fourier transform of ψ̃(t, x̃) = ψ̃(0, x̃),
with x̃ = mv0 x, which is an isotropic and homogeneous field. This is an uncorrelated field, a field that has min-
imal coherence length. This type of initial configuration reinforces that there is no seed for condensation in the
halo or axion minicluster, and that condensation arises simply by the gravitational interaction or gravitational
interaction plus self-interaction. This initial condition is also well motivated from axions formed by the Kibble
mechanism (Fairbairn et al. 2018).

Using Wick theorem, we can write our kinetic equation in closed form for the SIFDM as (Kirkpatrick et al.
2020)

∂f

∂t
+

p

m
· ∇xf = F1 + F2 + I(f) , (148)
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where the F1 and F2 correspond to the two point correlation functions in the Wick theorem, the first two terms
in (84), and I(f) comes from the connected part35, the last term of (84). The first two terms are given by:

F1 = 2 Im 〈Utot(x− i∇p/2)〉f(x,p) , (149)

F2 =
2

(2π)6
Im

∫
dqdq′dydy′

[
4πGm2∆−1

y + g δ(y)
]
ei(y

′·q−y·q′)f(x +
y

2
,p + q) f(x +

y′

2
,p + q′) . (150)

They are T–odd terms. They are order one in the interactionsO(g) andO(G). The potential obeys:∆〈Utot〉(x) =
(4πGm)/(2π)3

∫
dp (f(x,p)− n).

We can separate the contribution in I(f) by coming from the the self-interaction and from the gravitational
interaction I(f) = Ig(f) + IG(f), respectively, where

Ig = 2 Im

∫
dy e−ip·y g〈ψ+ψ

∗
−ψ+ψ

∗
+〉conn , IG = 2 Im

∫
dy e−ip·y 〈ψ+ψ

∗
−UG〉 . (151)

Here we simplified the notation by writing ψ± = ψ(x± y/2). These terms are second order in the interactions.
Both of those interactions act in very different scales. The self-interaction is short-range and it was the case
we studied in Section 3.6. The case of the gravitational interaction needs to be treated carefully since the
gravitational interaction is long-range. Here we follow (Levkov et al. 2018) where the treatment from Landau
for long range Coulomb interactions was used for gravity.

For the initial Gaussian distribution, F1, F2 and I(f) vanish, and the ULDM distribution is initially static.
We are interested in describing kinetic relaxation of ULDM in the halo of a galaxy (or in an axion minicluster),

which is the condensation, and obtain the relaxation time of this process. As we saw before, inside the halo
y = ∆x� R, the field and the potential are homogeneous. In the center of a homogeneous spherically symmetric
halo where the condensate is formed (or a homogeneous box in the case of simulations), the terms F1 and F2

vanish and we do not need to take them into account when studying these initial stages of the condensate,
where the four-wave kinetic equation is valid. Therefore, in our case

∂f

∂t
+

p

m
· ∇xf ≈ I(f) . (152)

Lets first treat the gravitational part. To estimate IG(f), we can follow Landau’s treatment. In the regime
where the above equation is valid ∆x� R, and in the kinetic regime (mv)−1 � R, we can expand the potential
as UG(x + y/2) = UG(x) + (y/2) · ∇UG(x). With that the gravitational scattering integral we were calculating
can be described by a diffusion process in phase space: IG = −∇p · s where the Landau flux s is

s =
1

(2π)3

∫
dx′dp′ Fx′p′

xp ∇x(4πGm2∆−1
x−x′) , Fx′p′
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∫
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∗
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′
+ψ
∗
+
′〉conn . (153)

Plugging this new IG in the kinetic equation, we can rewrite it as a the equation for the evolution of the four-
point function F , which involves a six-point correlation function. To be able to write this equation in closed
form and solve it, one use Wick theorem. Ignoring the connected part in the limit of small separations y � R,
the Landau flux is then si =

∫
dp′Πij(u)(f ′2∂pjf − f2∂p′jf

′), where u = (p′ − p)/m and f ′ = f(x′,p′). The

term Πij(u) is given by the integral

Πij(u) =

∫
dt′dy ∂i∆̄

−1
y ∂j

[
∆̄−1

y+ut′ − g δ(y + ut′)
]
, (154)

where ∂i∆̄
−1
y = 4πGm2∆−1

y . Then this Landau flux defines IG through IG = −∇p · s. However, to take the
above integral one needs to introduce a long-time and a short-time cutoffs, given the logarithmic divergence of
the Poisson Green’s function. Therefore, the integral is taken in the interval (mv2)−1 � t′ � R/v, which is
the time that correspond to the regime where relaxation can happen since it can only happen inside the halo
y � R where the field is homogeneous, giving the upper limit, and for distances bigger than the de Broglie
wavelength y � (mv)−1, since diffusion is only sensitive to fluctuations at long distance (Kirkpatrick et al.
2020). The fact that diffusion is not sensitive to short distance scales already tells us that the self-interaction
contribution be sub-dominant in the relaxation process. So the condensation in the halo happens much faster
because of the gravitational interactions. In this time range, the dominant contribution of this integral yields
Πij ≈ Λ(u2δij−uiuj)/u3, where Λ ≡ log(mvR) is the Coulomb logarithm. We can compute the relaxation time
due to gravity with this, which yields IG ∼ f/τG.

The Ig contribution is going to be sub-dominant, but we can still evaluate their contribution to the con-
densate. Since the self-interaction is short range, we do not need to resort to Landau’s treatment. We can just
set Utot = g|ψ|2, and solve (113). Considering again that we have a homogeneous distribution inside the halo
and ignoring the connected part of the Wick theorem since we want the result in leading order of g, then

35 Called Stf in reference (Levkov et al. 2018).
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the kinetic equation can be simplified to d2f/dt2 ∼ 8g2〈n〉f , which tells us that the relaxation rate from the
self-interactions is dIg/dt ∼ 8g2n2f = γf , where d/dt = ∂t + p · ∇x/m. This relaxation rate does not grow
with time in this limit, but when the connected correlations start to become relevant the relaxation rate starts
varying with time. The relaxation time from self-interactions is then given by τg = 1/

√
γ.

With that the relaxation time for this weakly interacting Bose gas subjected to gravity in a halo is given by:

τG =

√
2mv6

12π3G2n2Λ
, τg =

1√
8 |g|n

. (155)

This gives the condensation time. The relaxation time for the gravitational interaction is inversely proportional to
G2 (and the cutoff scale), while the self-interaction one is inversely proportional to g. The gravitational relaxation

time is much faster than the self-interaction one. The total condensation time is τtot ∼ 2τGτg/(τg+
√
τ2
g + 4τ2

G)→
τGτg/(τG + τg) → τG, is dominated by the gravitational one. In (Kirkpatrick et al. 2020) this is estimated to
be of the order τg/τG ∼ 105 for the QCD axion. Therefore, the formation of Bose stars mainly happens due to
gravity, even in the presence of the self-interactions. However, self-interaction is important as we saw above that
the presence of the self-interactions lead to a different phenomenology and size of the soliton core. Notice that
thermalization from gravitational interactions showed here is different then the one arising from short-range
interactions through power-law turbulent cascades (Semikoz and Tkachev 1997), arising in this system through
a diffusion process.

In the virialized halo, we can see that the formation of the Bose star, for the FDM and SIFDM models,
can happen in the universe with formation time smaller than the age of the universe. For example, in dwarf
galaxies, the condensation times for a FDM particle of mass m22 would take ∼ 106 yr.

This formalism shows us that we can describe the first stages of the formation of a BEC in the halo of
galaxies using kinetic theory. This approximate description of the BEC can help us estimate the condensation
time and study the properties of the Bose star. This formalism is particularly useful for numerical simulations
which were performed in (Levkov et al. 2018) for the FDM model. The formation of the condensate can be seen
numerically with no seed condensate in the simulation. It is seen that the initial evolution of the condensate
also follows (148) for t < τG, as expected for the wave turbulence with four-wave interaction. The Bose stars
grow after formation and the condensate becomes stronger (more particles condensate). The first decade if this
growth shows a growth in the mass of the Bose star Ms ' cv0(t/τG − 1)1/2, with c = 3 ± 0.7. Only the first
decade of the growth was seen both from computational limitation, but also this description does not hold for
when the condensate starts to get stronger, and the description with four-wave interaction is expected to break.

That study shows us that we can indeed have the formation of a Bose Einstein condensate of the ULDM
particles inside the galaxies, forming Bose stars and solitons. This shows that the picture of having ULDM
forming condensed cores inside galaxies is indeed valid.

4.1.5 Discussion

Before going further and describing the observational consequences of the FDM and SIFDM, we are going to
briefly discuss the picture presented here and some different interpretations regarding condensation that are
present in the literature.

The picture that we have showed until now for the behaviour of the ULDM is the following. ULDM is
described by a classical theory that gives its cosmological evolution and its non-relativistic evolution in galaxies.
Inside the halos of galaxies, the ULDM thermalizes and forms gravitationally bound systems, the Bose stars or
soliton, where a BEC or a superfluid is formed. This condensed core is smaller than the size of the galaxy and
the coherent length gives the region where the wave-like behaviour of the condensate is manifested, being of the
order of the de Broglie wavelength in the case of the FDM. The formation of these objects through gravitational
interactions can occur inside the halo of galaxies, without any condensate seed, in a time smaller than the age
of the universe, as shown from kinetic theory.

Therefore, in this picture, after the halo of the galaxy is formed and virializes, thermalization in the inner
regions of the halo happens and a condensate core is formed. This coherent length of the condensate, which
changes if we are in the FDM or SIFDM cases, sets the size of the core that is smaller than the radius of the
galaxy. This condensed core in the inner region of the galaxy is surrounded by a shell where DM behaves like
a free particle (since λdB � d) instead of a wave like it is inside the core. Outside the cores, in the outskirts of
the halo, DM follows the profile predicted by CDM. A condensate core can also be formed in the center of a
more massive system like a cluster. However, this condensate is very small, smaller than the ones in galaxies,
in comparison with the size of the cluster. Therefore, in the picture presented here, a BEC is formed in the
interior of galaxies due to the gravitational interactions.

However, many authors in the literature there is a different view. For some authors coherence of the ULDM
is established initially, in the initial stages of formation of the ULDM. This is the case for axions, as pointed out
in Section 4.7 of (Marsh 2016) (where a very good discussion of this topic is presented). The cosmic axion field
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is described as a classical coherently oscillating scalar field. This classical field φ comes from the expectation
value of the quantum axion field, which can be represented in the Heisenberg picture as 〈φ|φ̂(x)|φ〉 = φ(x). The
state of the axion field φ is going to be coherent state (Zee 2003; Itzykson and Zuber 1980), with this coherence
established initially. For the population of axions that is produced through vacuum misalignment, in the case
where the Peccei-Quinn symmetry is broken during inflation, the inflationary evolution is responsible to making
the axion coherent within the Hubble radius. For the axion population that form via the decay of topological
defects, coherence of the field is obtained via thermalization after formation with rate of the order of Hubble
rate H0, as presented in (Marsh 2016).

Therefore, as it is claimed in (Marsh 2016), the axions coming from any of the populations can be described
cosmologically as a classical coherently oscillating scalar field. This classical description of the axion is said to
hold throughout the evoltuion of the universe. This is discussed in (Dvali and Zell 2018) where the validity of
this mean field approximation is studied. They wanted to determined what is the quantum break time, which
is defined as when quantum effects become important again for the description of the axion and the classical
description of the axions is not valid anymore. The quantum breaking time is determined by the rate of axion
scattering, and it is found that it exceeds the age of the universe for the QCD axion, but this would also be
true for an axion with a smaller mass. Therefore, they conclude that it is safe to treat the axion as a classical
coherently oscillating scalar field if coherence was established initially36

This classical description also holds inside the halos of galaxies. This has been shown in (Allali and Hertzberg
2020) for a ultra-light fields that behave like DM. The transition from a quantum to a classical system is called
decoherence37. This is an important question since decoherence is known to occur very fast in macroscopic
systems due to interactions of the system with the environment. However, if we have DM, where interactions
with the environment are known to be very weak interacting mainly gravitationally, decoherence might proceed
less efficiently. In this reference they study decoherence of a ULDM, including axions, in the halo (ULDM
overdensity) with its environment (the diffuse hydrogen in galaxies in this study). They find that ULDM in the
halo can be treated as classical inside galaxies, since decoherence would take place very fast, with a decoherence
rate of the order of the Hubble rate H0 for ULDM with m ∼ 10−7 eV. The same result holds for a BEC in
the halo of galaxies. If we have a Bose star that formed in the halo, the decoherence time is very fast for any
ULDM that has m < eV, so the condensate, after formed, can be treated as classical and described by classical
equations like the Schrodinger-Poisson system of equations.

With that, the picture that some authors have is that since coherence is established from initial conditions,
and this classical picture can be maintained throughout the evolution of the universe, then when the Jeans
length stable regions are formed, the axion in this region is already a coherent field. Thus, inside these regions
in the interior of galaxies, coherence was established by initial conditions, so no thermalization is necessary to
happen inside the halo.

However, the coherence of this classical field could be broken during the evolution of the universe by local
processes. This can come from many out of equilibrium processes that occur in the universe. One example
of this is the formation of halos, since virialization happens through violent relaxation. In this case the DM
particles scatter on small fluctuations of the gravitational field, and coherence can be lost. The system can then
be describe by an ensemble of classical incoherent waves, with very small coherence length. Also, as pointed out
in (Dvali and Zell 2018), even the classicality of the axion could be challenged in small overdense regions and
quantum breaking could occur in these regions.

With all that, we can see that either having coherence from initial conditions or not, the ULDM field has
to either thermalize or re-thermalize on galactic scales. We showed above that thermalization of ULDM can
take place in the halos of galaxies in the presence of gravity or gravity and self-interaction, without any need of
previous coherence of the field. And in these regions, it was shown that a BEC is going to be formed. And after
its formation from the results from (Allali and Hertzberg 2020) we can treat the evolution of the Bose star as
classical. This picure is valid for the FDM, SIFDM and for the DM superfluid. So, for the phenomenology of
ULDM in galaxies, if the field was already a coherent field or not, does not alter the conclusions we present in
this review, since this coherence can be reached at late times in the halo.

We just want to emphasize one last thing. Bose Einstein condensation is a quantum mechanical phenomena.
It can only arise because of quantum mechanics. The definition of a condensate is the one given in Section 3.7.
A BEC can be described classically in the classical limit of the many–body theory or the field theory description

36 In this work, they consider that the axion is already represented by a classical coherent field, with all axions in the zero
momentum. Thus, it already started with a classical uniform axion field. They do not discuss the thermalization process or any
mechanism that led axions to this state. Only studied the maintenance and validity of the classical approximation.
37 Coherence in this reference is the term used to describe the pure quantum mechanical system. This notation comes from

quantum mechanics since coherent states only occur in quantum mechanics. Therefore, it has a slight different meaning than the
classical coherent scalar field we have been talking until now. The coherent classical field we have been talking until now is the
field that came from the expectation value of the (quantum mechanical) field operator of this ULDM taken in these coherent

states 〈φ|φ̂(x)|φ〉 = φ(x). So we call this classical field of coherent classical field since the field was in a coherent state during its
initial quantum stages. This term is usually used in the literature. Refer to (Allali and Hertzberg 2020) for a proper definition of
decoherence.
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of a condensate, or by an approximate classical theory as an ensemble of waves like wave turbulence (where we
can make a parallel with the definition of a condensate as particles in the ground state which in the language
of waves translates is waves with k = 0).

This discussion about thermalization or re-thermalization, classical or not, in the context of ULDM has been
presented in many places in the literature of ULDM with many different point of views and interpretations.
For the interested reader some of these discussions are present in the following references (Sikivie and Yang
2009; Erken et al. 2012; Marsh 2016; Guth et al. 2015; ?; Davidson and Elmer 2013; Davidson 2015). We hope
we have presented here a clear view of what happens in the interior of halos and how this can be interpreted,
unifying some aspects of these interpretations.

4.1.6 Cosmological and astrophysical consequences of the FDM

Now that we have a description of what happens cosmologically and inside the halos of galaxies for these
models, we are going to discuss the rich phenomenology that these models exhibit. We are going to study their
predictions and discuss their cosmological and astrophysical consequences. These models behave differently than
CDM in two ways. They present a CDM like behaviour on large scales, with modified initial conditions, and
inside the halos of galaxies, they form a core in the inner part of the halo where a non-CDM behaviour is
described, while a NFW behaviour is present in the outskirts of the halo, outside the core (see Figure 10).

We need to study the predictions coming from these modified initial conditions ,and from the presence of
these cores and their non-CDM behaviour. We can think about three main groups of consequences of these
models. First, is the suppression of the small scales structure, that is going to affect many observables both
cosmological and astrophysical; the second are related to the presence of the cores in the center of galaxies; and
the third are related to dynamical effects that arise from the BEC or superfluid formed in the central regions of
galaxies. We are going to describe these predictions in this section. We are going to focus mainly in the FDM
in this section. Each of those effects can be probed with different observables, which can lead to bounds in
the parameters of the models. We are going to talk about how these effects are measured and the constraints
obtained in Section 5. For other observational consequences of FDM, see (Hui et al. 2017).

A small comment. Although we showed above the we call solitons the ground state of the SIFDM, and Bose
stars the ground state of the FDM, in the literature the term solitons is used for both. Therefore, from this
point on we will use the term soliton to also describe the ground state of the FDM.

Suppression of structure formation

One of the effects coming from the FDM and SIFDM classes of models is the suppression of small scale
structure. This is a consequence of the fact that these models present sizable Jeans scale which cuts off the
structure formation for wavelengths smaller than λJ. The Jeans length for the FDM model is given by (136).
Therefore, as we saw in the previous section, for modes that are larger than the Jeans length λ > λJ, gravitational
instability takes place and structure formation can happen, while modes smaller than the Jeans length λ < λJ

have oscillatory solution and no structure formation takes place. So structure formation suffers a cut off on
scales of the order of the Jeans length. The same happens for the SIFDM model, but the scale of this cut off is
different, analogous to the Jeans length, or the healing length, given by (127).

We can quantify this suppression by computing the power spectrum for the ULDM models. We are working in
linear perturbation theory, as showed above, and we can evaluate the linear suppression of the power spectrum.
In analogy to what it was done for the WDM model, the modifications of the power spectrum with respect to
the ΛCDM power spectrum are encoded in a transfer function TFDM(k, z). We can relate the power spectra
as (Hu et al. 2000b; Marsh 2016)

PFDM(k, z) = T 2
FDM(k, z)PΛCDM(k, z) = T 2

FDM(k, z)

(
D(z)

D(0)

)2

PΛCDM(k) , (156)

where PΛCDM(k) is the power spectrum of ΛCDM at z = 0 which in turn is the primordial power spectrum
transformed by an appropriate transfer functions as defined in (Bardeen et al. 1986; Eisenstein and Hu 1998);
and D(z) is the growth factor given by (Peebles 1993):

D(z) =
5Ωm

2H(z)

∫ a(z)

0

da′

(a′H(a′)/H0)3
. (157)

The FDM transfer function is given by:

TFDM =
cos(x3

J(k))

1 + x8
J(k)

, (158)
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where

xJ(k) = 1.61
( m

10−22 eV

)1/18
(

k

kJ,eq

)
, kJ,eq = 9

( m

10−22 eV

)1/2

Mpc−1 . (159)

The scale kJ,eq is the Jeans length at matter-radiation equality, the time when perturbations start to grow.

This transfer function presents a fast decay at k = kJ,eq, which leads to a suppression of the power spectrum
on those scales. The mode where the power spectrum decays to half of its value T (k1/2) = 1/2 is the half mode

given by (Li et al. 2019) k1/2 = 5.1 (m/m22)4/9 Mpc−1, where m22 = 10−22 eV. If k1/2 < knl ∼ 0.1 where

knl is the non-linear scale which is around 1 Mpc−1, the suppression of the power spectrum can be probed
by linear CMB and LSS observables. Otherwise, we need non-linear observables. Therefore, roughly speaking,
we can probe the suppression on the power spectrum on linear scales for FDM with masses m . 10−23 eV.
One interesting fact is that the k1/2 of the FDM is the same as the one for WDM, although they are different
functions of the wavenumber.

Beyond linear observables, this suppression of the power spectrum on small scales induces a suppression in
the formation of FDM halos. This can be estimated by calculating the linear half-radius (R1/2,lin) which is the
radius where half of the mass of the spherically symmetric system is contained. Then for R1/2,lin ∼ λ1/2/2,
where λ1/2 = 2π/k1/2, we obtain the mass of the smallest halos that can be formed in this theory (Bullock and
Boylan-Kolchin 2017; Niemeyer 2019)

Mlin =
4π

3
R1/2,lin〈ρFDM〉 = 4× 1010M�

( m

10−22 eV

)3
(
Ωm
0.3

)(
h

0.7

)2

, (160)

where 〈ρFDM〉 = 3/(8πG)H2
0 Ωm. Therefore, FDM predicts a large suppression of halos for M < 1010M� if the

mass is m22. Bellow, in Section 4.1.5, we are going to see how this can be calculated more specifically given the
cores in the halos and see how these predictions help address the small scale problems.

This suppression of the power spectrum on small scales also suppresses the formation of galaxies. It is
found in simulations that the number of sub-halos in FDM in comparison to CDM is reduced by a factor
of ∼ (3M/M1/2)2.4. This suppression of formation of small galaxies is larger in FDM at higher redshifts, in
comparison to CDM. This opens up an important question about FDM being able to produce small scales
structures at early times to be probed by Lyman-α forest.

Therefore, the linear suppression of the power spectrum can affect both in the linear and non-linear part of
the theory. This can lead to the following effects. This suppression can be probed by probing the linear power
spectrum by the CMB and the matter power spectrum through LSS surveys. Or even better by observables that
probe even lower scales, like Lyman-α forest and 21-cm from neutral hydrogen. The suppression of small halos
also affects the non-linear scales. The substructure of this model is going to be different than in CDM, with a
suppression of substructures on small scales. The linear theory can predict a minimal mass for the structures
formed, which can be probed by the population of satellites observed (and can be related to the missing satellites
problem, as we will discuss in the next subsection). The substructures can also be probed directly by gravitational
sensitive probes like gravitational lensing and streams, which are affected by the substrucutre present in the
halo, and will be affected differently if the DM presents this suppression. We are going to see these observables
and the bounds they can put in the models in Section 5. The substructures in the FDM model are also going
to be changed by details of the presence of the core, which lead to different predictions that can be tested, as
we will see bellow.

The entire numerical calculation of the power spectrum for the FDM model can be done using the software
AxionCAMB (Lewis et al. 2000; Hlozek et al. 2015) or a modification of software CLASS madei in (Ureña López and
Gonzalez-Morales 2016). For our discussion in the next section we used power spectra generated by AxionCAMB.

We discuss now the effect of the FDM in two observables that can probe this suppression, together with
other phenomenology of the FDM like the change in the rate of expansion: the CMB and the matter power
spectrum.

CMB - We want to review the modifications that FDM can cause in the observables of the CMB so we
can understand how we can use this observation to probe the mass of the FDM. It is also possible to probe the
fraction of FDM in the universe, if this is not assumed to be all the DM in the universe. We are interested in
the case where FDM is all the DM in the universe, but we briefly comment here on the case where it is not.

The low mass of the FDM can alter the CMB in many different ways. We are mostly interested here in the
effects in the primary CMB and CMB lensing, which are the ones that probe the DM in the ranges of mass
we are interested for the ULDM models. There are other CMB observables that can probe other aspects of the
microphysics of these models, and of their formation, as we can see in Figure 2 from (Abazajian et al. 2019).
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ULDM affects the CMB in two main ways38. The different expansion rate caused by the ULDM models affects
the primary CMB, which is the adiabatic, unlensed without secondary effects CMB spectra. The suppression
of the power spectrum that leads to a different clustering present in the ULDM models can be seen in the
secondary lensing anisotropies.

We assume now that all the DM is given by ULDM. The primary CMB is affected by the expansion rate.
Depending on the mass of the axion their oscillations take place at different redshifts. If zosc . 1100, then after
recombination the ultra-light field is behaving like dark energy and has a very different expansion rate than in
the case of ΛCDM. In this case, the amount of dark energy in the universe will be much bigger, since this will
be composed of Λ plus the one from ULDM, affecting the first peak and the Sacks Wolfe plateau (the plateau
around ` ∼ 100 that can be seen in Figure 11). The amount of the component that behaves as DM will be much
smaller in this case, which in turn affects the other peaks. This can be seen in the left panel of Figure 11. If
the oscillations take place at zosc & zrec ≈ 1100, the ultra-light field behaves as DM before recombination, so
they can alter the expansion rate during the radiation time. This affects the Silk damping tale, enhancing the
higher acoustic peaks because of the reduction in the angular scale of the diffusion distance. This effect can be
degenerate with changes in Neff . As the mass gets heavier, which indicates that the ULDM behaves like DM
since very early in the universe, the ULDM behaves more and more like CDM, and the angular power spectrum
is very close to the ΛCDM one39.

In this figure we plot the angular temperature power spectrum of coming from theoretical predictions of
the FDM model for different masses, obtained using AxionCAMB. We also plot for comparison the data from
the Planck 2018 Cl TT power spectrum (Ade et al. 2018) and the ΛCDM model best fit to this data. We can
see that for masses smaller than 10−25 eV we can even visually see the deviation of the power spectrum from
the data and from the ΛCDM one, with an enhancement of the size of all the peaks, and changing the relation
between the second and third peaks, which indicates less DM with respect to baryons. For higher FDM masses,
we cannot visually distinguish it from the ΛCDM one. Therefore, the primary CMB can put bounds on the
mass of the ULDM according to their modified expansion rate at recombination.

Other effects might arise when the density of the axions is not equal to the total DM energy density. There
is a degeneracy between the amount of ULDM, ΩULDM, and the amount of curvature (or dark energy) and
matter. This can be seen in more detail in (Marsh 2016).

The ULDM can also affect the secondary lensing anisotropies. The small scale suppression of the power
spectrum can be seen as a lensing deflection power on scales ` > 1000. This can be seen in the lensing convergence
power spectrum. This effect from the suppression of clustering can also be seen in the matter power spectrum,
as we show bellow. This effect is degenerate to the one coming from massive neutrinos. For smaller mass ULDM,
one can use the effects of expansion to break this degeneracy, but this is not the case in the range of masses we
are interested for ULDM that has an important effect on small scales.

This shows that CMB is a powerful observable to probe many aspects of ultra-light particles, specially in
the low-mass range. We are going to see in Section 5 the constraints obtained by CMB observations in the FDM
model and discuss some forecasts.

Fig. 11 Left panel: Angular power spectrum of the temperature CMB anisotropy for the FDM model for different masses where
FDM is considered all the DM in the universe. We compare this with the ΛCDM model best fit to the Planck data (Ade et al.
2018) showed by the gray data points. Right panel: Matter power spectrum for the same FDM model as used in the left panel

38 Notice here that I am focusing only in the gravitational effects of the ULDM models. The CMB can also be affected by
aspects related to the microphysics of some of these models and their formation mechanisms, which is specific to come models. For
example, putting bounds in the axion isocurvature contributions can offer contraints in the axion decay constant fa. It can even
probe interactions in the dark sector. For more details on these other effects, check (Abazajian et al. 2019; Hlozek et al. 2018)
39 In this section where we are treating the FDM model, when I say heavier FDM masses I mean m & 10−25 eV.
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Matter power spectrum - The matter power spectrum brings information about the matter density
contrast in the universe with respect to the scale. The matter power spectrum contains a huge amount of
information. Considering the full shape of the power spectrum, we can measured the equality scale (k−1

eq ) which
sets and can be inferred by the peak of the matter power spectrum (a bit hard to see in right panel of Figure 11)
and its overall shape. The other feature that is present in the power spectrum are the BAO features, from where
we can obtain the BAO frequency and infer the sound horizon at baryon drag (at zrec).

The ULDM affect the matter power spectrum both by having a different expansion rate and from the
suppression of clustering on small scales. A different expansion rate would alter the BAO, presenting a different
sound horizon in the power spectrum. This is more relevant for smaller masses of the FDM particle, when the
FDM behaves like dark energy for a longer time in the evolution of the universe.

The other effect which is more dramatic on small scales is coming from the different clustering that the
FDM presents. As we can see in right panel of Figure 11, for a FDM that represents all the DM in the universe,
the matter power spectrum for FDM presents a suppression of the small scale power spectrum. As we saw,
this suppression comes from the Jeans length of the FDM that suppresses the power spectrum via the transfer
function. We can see that the smaller the mass is, the effect is more dramatic. For masses that affect the linear
scales, this can be easily tested using observations. However, we can see that for the heavier FDM particles,
this suppression occurs on the small scales, where there is not a lot of observational data.

We can use galaxy surveys to probe the biased matter power spectrum. This can give us bounds in the
mass of the FDM, as we will see in Section 5. However, for heavier masses we can see that the suppression in
the power spectrum occur on smaller scales, not probed by galaxy surveys. For that we need new observables,
like Lyman-α which allows us to probe scales of order 0.5 Mpc/h . λ . 100 Mpc/h. This permits to constrain
higher masses for the FDM. Another window of observation that allows us to probe the smaller scales is 21-cm
from neutral hydrogen, which can gives the matter power spectrum on scale k > 10 Mpc−1. We will discuss
these observables in Section 5.

One important point about using the power spectrum is the issue of the bias. To infer the matter power
spectrum one needs to observe biased tracers of the DM distribution. The bias relates each of those tracers with
the underlying DM distribution. This bias for each tracer is unknown, and each probe presents a different bias.
Therefore, when obtaining constraints on the mass of the FDM, there is a degeneracy with bias. There is also the
possibility of a scale dependence in the bias of ULDM. This is still a not so well studied problem for the ULDM,
with a few studies from numerical simulations for the FDM case (Cooray and Sheth 2002; Hlozek et al. 2015).
One can also obtain the matter power spectrum from shear measurements, coming from gravitational lensing.
This are unbiased tracers and can provide measurements of the FDM mass with a complementary approach.

Halo density profile

We saw above that the suppression of the power spectrum in the FDM model leads to a suppression in
formation of small mass halos. Only halos with M > Mlin where Mlin is given by (160) are formed in the FDM.
This suppression can lead to a different number of low mass halos, modifying the halo mass function.

The halo mass function (HMF) describes the density of halos per unit of mass. To determine the HMF of the
FDM one needs to resort to either simulations or semi-analytic methods. Usually simulations are performed and
the HMF can be fitted, as done in (Schive et al. 2016). In this reference they have a simulation of colisionless
particles with initial conditions coming from the FDM. The fitted HMF obtained is given by:(

dn

dM

)
FDM

=

[
1 +

(
M

M0

)−1.1
]−2.2 (

dn

dM

)
CDM

. (161)

This HMF presents a suppression for low mass halos, characterized by the scale M0 = 1.6 × 1010m
−4/3
22 . The

HMF of CDM depends on the redshift and mass of the halo, while the suppression term in brackets is redshift
independent, which is a consequence of the FDM modification only coming from the initial conditions. This
means that this also does not take into account the effective sound speed of the FDM, only through the
suppression of the initial power spectrum. This HMF is very accurate for higher masses, in agreement with the
CDM HMF, but it presents an uncertainty in the low-mass end, showing that this HMF is reliable to show the
suppression on those scales, but not so reliable to obtain the slope of the HMF for FDM for low halo masses.

There is also another HMF obtained using different methods. In (Marsh and Silk 2014) with the aim of
taking into account the scale dependent linear growth from the FDM, they obtain the HMF from a modified
Press-Schechter approach. This yields (

dn

dM

)
FDM

= −ρm
M

f(ν)
d lnσ2

d lnM
, (162)

where ν ≡ δc/σ, δc is the critical collapse overdensity and σ(M) is the variance of the power spectrum. The
variance is calculated by smoothing the power spectrum with a spherical top-hat window function. The function
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f(ν) comes from the Sheth-Thormen model (Sheth and Tormen 1999) and it is given by f(ν) = A(q/2π)1/2ν[1+
(qν)(−2p)] exp(−qν2/2), with parameters A = 0.3222, p = 0.3 and q = 0.707. The critical overdensity δc brings
more details about the evolution of the FDM. At z = 0, it can be described by comparing δFDM

c (k) = G(k) δc,
where δc = δc(z = 0, k = k0) and k0 = 0.002 is the pivot scale. The scale dependent functionG(k) is the ratio of
the scale dependent growth factors from ΛCDM and FDM (Marsh and Silk 2014; Bozek et al. 2015) (in (Marsh
2016) a numerical fitting for this function was found). There are many other modifications of this HMF and
alternative formulations that can be seen in (Sheth and Tormen 1999; Bozek et al. 2015; Du et al. 2017b;
Schneider 2015).

We are now going to see how this prediction can be probed by the luminosity functoin and reionization.

Luminosity function and reionization -
Observations that probe the low-mass end of the halo mass function can be used to test the FDM and

put constraints in the mass. A sensitive probes is the luminosity function of galaxies, which can inherit the
suppression coming from the halo mass function. Observations at high redshifts of galaxy counts, reionization
history can be used to test the suppression of the HMF caused by the FDM.

The luminosity function φ(L) is a map between the galaxy luminosity and the dark matter halo. If we want
to obtain cumulative galaxy number density so we can compare with observations, we need to relate the UV
magnitude of a galaxy with the mass of the halo. If there are less halos formed at early times, this would lead to
less galaxy formation. This can be one characteristic of the FDM model to be tested, but this suppression cannot
be too severe otherwise this model could lead to less than expected high-z galaxies than seen in observations,
like the ones from the Hubble Ultra Deep Field (Bouwens et al. 2015). This lack of galaxies could also impact
the efficiency of the reionization of the intergalactic medium (IGM), which takes place through star formation.
This would impact the optical depth of the CMB, which is constrained by CMB observations (Ade et al. 2018).

The relation between the HMF and the the luminosity function is usually done by abundance match-
ing (Kravtsov et al. 2004; Vale and Ostriker 2004; Conroy et al. 2006). For that, one needs to assume a mapping
between the halo mass and the galaxy luminosity or the UV magnitude of the galaxy. This is done by matching
the cumulative UV luminosity function Φ(L, z) for magnitude smaller than MUV (which is the same as lumi-
nosities higher than LUV ) given by the integral of φ(L) in this interval, with the cumulative HMF for halos
masses bigger than a given Mh: Φ(< MUV , z) = n(> Mh, z). That, together with fixing φ(L) at low-z with
observations, fixes the mass to luminosity (or UV magnitude) of galaxies.

Given the modified HMF presented by the FDM model, we can then predict the luminosity function of
this model. In (Schive et al. 2016; Bozek et al. 2015) we can see some examples of the luminosity function for
FDM. The low-mass suppression in the HMF leads to a luminosity function that ends at smaller magnitudes.
Therefore, depending on the mass of the FDM particle, we can predict a cumulative luminosity function that
ends at different magnitudes. This can be used to put constraints in the FDM by using, for example, observations
of dwarf galaxies or measurements of high-z galaxies like the one from the HUDF. We discuss this in Section 5.

Depending on the mass of the FDM particle we can predict less galaxies at high-z, which would alter the
reionization history. This can be seen given that the UV luminosity function is related to the flux of ionizing
photons (Niemeyer 2019),

Fion = fesc

∫
φUV (L) γ(L) dL , (163)

where fesc is the scape fraction, related to the fraction of ionizing photons that escapes the galaxy without being
absorbed, and γ(L) the conversion rate, which describes the conversion between the UV luminosity of galaxies
to the luminosity of ionizing photon (for more details see (Schive et al. 2016) and references therein). With that
we can write the Thomson optical depth to CMB:

τ =

∫ z

0

dz′
(1 + z′)2

H(z′)
Q(z′)σT n̄H (1 + ηHe Y/4X) , (164)

where σT is the Thomson cross-section, n̄ is the mean comoving hydrogen number density, X is the hydrogen
fraction, Y = X − 1 is the helium fraction, and ηHe is the ionization state of helium.

We can then use this modified reionization history, coming from the modified luminosity function, to con-
strain the mass of the FDM. One can use, for example, the CMB where τ(zrec) is measured.

Sub-halo mass function

As discussed above, the FDM model is characterized by a suppression in the formation of the small structures.
This minimal mass of structures formed is going to impact the substructures in the halo. Therefore, a smaller
number of sub-halos is present in the FDM in comparison to CDM. This suppression can be seen in the sub-halo
mass function, which is given by dnsub(m)/d lnM , where nsub is the number of sub-halos and M is the halo
mass. This can also be obtained from simulations and semi-analytic calculations (Schive et al. 2016; Corasaniti



62 Elisa G. M. Ferreira

et al. 2017; Marsh and Silk 2014; Du et al. 2017a), where a fitting form for the FDM sub-halo mass function is
obtained (Du 2018; Schutz 2020):(

dnsub

d lnM

)
FDM

= f1(M) + f2(M)

(
dnsub

d lnM

)
CDM

, (165)

where the functions present in this fitting formula are given by:

f1(M) = β exp

[
− 1

σ

(
ln

M

M1 × 108M�

)2
]
, f2(M) =

[
1 +

(
M

M2 × 108M�

)−α1
]−10/α1

. (166)

The influence of tidal stripping of cores in the sub-halo mass function is studied in (Du et al. 2018), showing
that core stripping influences this function for sub-halo masses smaller than 107M�. Including this effect the

parameters in (165) are: α1 = 0.72, σ = 1.4, β = 0.014m
3/2
22 , M1 = 4.7m

3/2
22 , and M2 = 2.0m1.6

22 . For these
parameters, this fitting formula agrees with simulations for masses smaller than 5× 10−21 eV.

Fig. 12 Comparison between the sub-halo mass function from CDM and FDM for different masses of the FDM particle. In the
case of the FDM, we consider that all DM is given by the FDM model.

In Figure 12 we compare the sub-halo mass function for FDM with different masses with the CDM one.
Here we used the following CDM sub-halo mass function:(

dnsub

d lnM

)
CDM

= aCDM

(
M

108M�

)−α0

. (167)

where aCDM = 113.094 and α0 = 0.86, which was obtained as a fit to the sub-halos of the Aquarium simula-
tion (Springel et al. 2008). We can see in the figure the suppression of the small scale structures by the redshift
dependent cut in the sub-halos mass function for smaller sub-halo masses, characteristic of the FDM model.

With the sub-halo mass function expected for the FDM model, one can test if the predictions from this
model are in accordance with observations.

The central soliton

We have shown in Section 4.1.3 that there is the formation of a soliton (or Bose star) in the central parts of
the galaxy, which is the ground state solution of the Schrödinger-Poisson system. However, there is no analytical
solution for the soliton and we have to obtain this solution numerically. This was done by many authors (Hui
et al. 2017; Chavanis 2011; Schive et al. 2014a,b; Kaup 1968; Harrison et al. 2002; Ruffini and Bonazzola 1969;
RUFFINI and BONAZZOLA 1969; Guzman and Urena-Lopez 2004; Bar-Or et al. 2019), and here we are going
to quote the numerical solutions obtained by (Schive et al. 2014a,b). Here we will restore the ~ factors for clarity.

An interesting characteristic of the Schrödinger-Poisson is that tit has scaling symmetry, which allows to re-
scale the quantities of this problem by an arbitrary variable β as {t, x, Φ, φ} →

{
β−2 t, β−1 x, β2 Φ, β2 φ

}
(Ji and

Sin 1994; Guzman and Urena-Lopez 2006) . This is also valid for the SIFDM, although more subtle (Guzman
and Urena-Lopez 2006), and the interaction term scales as g → β−2 g. The solutions also obeys this scaling
transformation, and the physical quantities transform as: the energy density of the soliton transforms as ρs →
β4ρs, the radius as r → β−1r, and the mass of the soliton as Ms → βMs. This means that one can simple
re-scale the solution to the equilibrium scale of interested, like the virial scale, if interested in the cores in
galaxies, or study the axion star in QCD axion miniclusters (Niemeyer 2019).

By assuming spherical symmetry, we need only to determine one of those physical quantities, like the soliton
density, and we can derive the other parameters from it.
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The density of the soliton core can be approximated by (Hui et al. 2017): ρc ' 4 × 10−3(Gm2/~2)3M4 '
(3M/4)R−3

1/2,c where the half-mass radius is R1/2,cρ̄1/2 ' 4~2/GMm2, the radius where the density drops to

one half of its value40. This can be re-written as (Schive et al. 2014a,b)

ρc '
1.9× 10−2

[1 + 0.091 (r/R1/2,c)2]8

( m

10−22 eV

)−2
(
rc

kpc

)−4

M� pc−3 , (168)

With the density, we can compute the soliton mass

Mc = 4π

∫ ∞
0

r2 ρc(r) dr = 2.2× 108
( m

10−22 eV

)−2
(
R1/2,c

kpc

)−1

M� . (169)

Here we are approximating these expression by considering that R1/2,c = rc is the radius of the condensate,
and the mass of the soliton core is the mass enclosed in the sphere with this radius. We can see that 95% of the
soliton mass is within r ≤ 3rc, and this means that (168) is accurate to 2% for 0 ≤ r ≤ rc.

We are interested in studying the soliton cores formed inside the galaxies, so we use the scaling to obtain
the solution soliton radius in a virial halo of MW-like mass

rc ' 0.16
( m

10−22 eV

)−1
(

M

1012M�

)−1/3

kpc . (170)

With that we can see that the FDM soliton core for a FDM with mass m = 10−22 eV is going to be smaller
than the halo of the MW, with size rc ∼ 0.16 kpc in the center region of the halo. In the outskirts of the halo,
FDM is expected to behave as free particles, like CDM, so the core is enveloped by shell with in NFW-profile:

ρhalo '
{
ρc for r ≤ rc
ρNFW for r > rc

, (171)

which is the picture we showed in Figure 10. We use this simplified picture to describe what happens in the
halo. We can see that the soliton core is inside the Jeans length, as expected, if one compare with (136). But it
is of the order of the de Broglie wavelength if we use the velocity in the soliton v2

c = r/(GMc),:

λdB(v = vc) = 3.91 rc

(
r

rc

)1/2

. (172)

In (Schive et al. 2014b) based on the scaling of the Schorinder-Poisson system and using the result of
simulations it was also derived the core-halo mass relation for the FDM, showing that Mc ∝ (1 + z)1/2M1/3,
where M is the halo mass. This shows that MW like halos with M ∼ 1012M� at a redshift around z ∼ 8 will
have soliton cores forming after the halo collapse with mass Mc ∼ 109M�. These soliton cores can be seen in
FDM simulations, as we will see in Section 4.3.

The presence of these soliton cores in the interior of the galaxies lead to a rich phenomenology. Since no
gravitational clustering happens in these regions, the soliton core has a cored profile ρc(r), which is different than
the one expected from CDM. Therefore, if we can probe the central density of galaxies and obtain a non-cored
profile, we can use this to put a bound on the FDM mass. Dwarf galaxies can also be used to do that. Since
those galaxies are DM dominated, one can measure their central density and compare with the bound obtained
by the expected core to constrain the mass of the FDM. We are going to discuss this in detail in Section 5, and
also in a extreme case in Section 4.1.5, where we discuss how the core can solve the cusp-core problem.

Dynamical effects - relaxation

In this section we are going to discuss the third class of observational effects of the ULDM, the dynamical
effects. These are effects that arise because of the wave-like behaviour that ULDM has inside the soliton cores
in galaxies. This can modify the dynamics of objects that are present inside this region where condensation
takes place. We are going to see here two of those effects that arise from the relaxation between the FDM and
macroscopic objects that move in or through the condensed core. These effects can lead either to heating, which
is seen as an energy injection in the orbit of the macroscopic object, or to cooling or dynamical friction, where
orbit of the object loses energy to the FDM field.

These two effects are present in CDM and other DM models, but are modified here by the wave-like behaviour
of the FDM. Effects like an enhanced heating can lead to observational effects such as the increase in the velocity
dispersion of systems and their expansion. On the other hand, this modified dynamical friction can be used to

40 Notice that this is the half-radius of the soliton core, since it is the radius where the core density drops in half. This is different
than the half-radius of the halo, for example.
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explain effects like system that were expected to have merged but did not, which represents a challenge for the
CDM paradigm.

In the same way that we studied relaxation between the FDM particles leading to the formation of a BEC in
Section 4.1.4, we can use the same techniques of kinetic theory in order to study the relaxation of the FDM and
the macroscopic objects. We describe bellow briefly this analysis. This was introduced in (Bar-Or et al. 2019)
and the reader should consult this reference for more details. There are also different ways to model dynamical
friction, which we will comment bellow.

We want to describe the relaxation between the FDM and macroscopic objects inside the condensate core.
Therefore, we can think about this as a test particle, or a contaminant, that is present in the condensate41.
We want to see how stochastic density fluctuations in the FDM core lead to diffusion of the velocity of the
macroscopic object42.

Using kinetic theory one can treat the problem as a diffusion of a test particle in a fluctuating density
field. In the case of the FDM, the FDM is represented by a wavefunction which is a collection of plane waves,
ψ(r, t) =

∫
dkϕ(k)exp(ik.r− iω(k)t), with ω = ~2k2/2m, interacting with a zero-mass particle. In this case we

can ignore gravitational interactions between the FDM particles and only focus in the interaction of the FDM
and the classical test particle. The FDM can be treat in this way inside the core where it is condensed.

Computing the diffusion coefficients for this system of a test particle in the FDM condensate, it was found
that it yields the same diffusion coefficients as the ones for a classical two-body relaxation where the test particle
interacts with a homogeneous classical density field composed by particles with mass mp, but with a different
effective mass for the FDM ”particles” meff , a different distribution function Feff and a different Coulomb
logarithm logΛFDM:

meff =
(2π~)3

m3

∫
dv f2(v)∫
dv f(v)

, feff = f2(v)

∫
dv f(v)∫
dv f2(v)

, (173)

where f(v) is the FDM distribution function and the effective distribution function is normalized like ρFDM =∫
dv feff(v). The Coulomb logarithm is logΛFDM ≈ log(2bmax/λdB(σ)), where bmax is the maximum scale of

encounter and σ is the dispersion velocity.
So the picture is that for understanding the effects of a macroscopic object in the FDM core one can think

as the FDM was composed by effective particles with mass meff , called FDM ”quasiparticles” in (Bar-Or et al.
2019)43. If this quasiparticle has a mass that is larger than the mass of these macroscopic objects mt, this leads
to the object to either lose energy or otherwise to gain energy from the encounters with these quasiparticles.
These two processes are the cooling (or dynamical friction) and heating.

Thus, if meff � mt, the fluctuations in the FDM field inject energy into the orbit of the macroscopic object.
This injection increases the velocity dispersion of the macroscopic object, which in turn increases its size and
we have heating. The heating time scale is defined as:

τheat =
3σ3

16
√
πG2ρbmeff logΛFDM

=
3m3σ6

16π2G2ρ2
b~3 logΛFDM

(174)

For times smaller then τheat, the system can gain energy from these FDM fluctuations and heating takes place.
For values of the effective mass in halos, we can see that the quasiparticle is more massive than stars. This
heating of stars either in a cluster or in the disk of galaxies can lead to observational effects.

If meff � mt, then the mass of the macroscopic object is bigger than the FDM quasiparticle, and the
macroscopic object loses energy from its orbit to the FDM field. This process can be interpreted as dynamical
friction. Since the macroscopic object is losing energy this process is also known as cooling, with a cooling time
given by

τcool =
3σ3

8
√

2πG2ρbmt logΛFDM

(175)

This process usually happen for more massive objects like globular clusters merging with the center of the
galaxy or black holes.

A similar analysis is done in (El-Zant et al. 2020b, 2016), where they confirm the results from (Bar-Or et al.
2019) and extend the model to include the effect density perturbations coming from stellar winds, supernova
explosions or active galactic nuclei. The consequence for super massive black holes in a FDM halo was studied
in (El-Zant et al. 2020a) which can lead to its ejection from the core. This effect can be used to put bounds in
the FDM mass.

We are going to discuss bellow some specific examples where these dynamical effects take place.

41 We are going to see this modelled from a microscopic theory in Section 4.2.4 in the case of the superfluid.
42 In this section I restore the ~ factors, sine the relation with the classical limit is more subtle. See (Bar-Or et al. 2019) for more

details.
43 Careful here that the term quasiparticle was used for the phonon and they do not have the same meaning as here.
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Gravitational Heating

We can now see here how the heating affects a stellar population. We show this for a prototype case of a
spherical stellar system of radius r? in a FDM gravitational potential. The initial distribution function of the
stellar system is Maxwellian with a velocity dispersion σt. Since star have mt = mstar � meff , only heating
takes place.

The heating is important when τheat,? is of order of 1/3 of the age of the galaxy τage, where

τheat,? ≈
2.08

logΛFDM

(
r?

1 kpc

)4 ( m

10−22 eV

)3
(

m

200 km/s

)2

Gyr . (176)

In this case we have a increase in the velocity dispersion and the system is going to expand44. This happens in
scales when r? < rheat,? with

rheat,? = 1.13 logΛFDM

(
τage

10 Gyr

)1/4 ( m

10−22 eV

)−3/4
(

m

200 km/s

)−1/2

kpc . (177)

For the comparison with observation that we are going to show in Section 5, we are interested in the cases
where this effect leads to a increase in the dispersion relation of the star, expanding the stellar system. This is
going to be studied in the disks of galaxies and also in a star cluster, like Eridanus II.

Dynamical friction

The change in dynamical friction is one of the most interesting consequence in BECs and superfuids. This
emergent phenomenology can lead to consequent observations that might reveal the characteristics of those
systems. It is interesting to see how dynamical friction behaves in the presence of a BEC core, as in the case of
the FDM. The dynamical friction in a BEC is not expected to change as dramatically as in a superfluid, which
has no friction, but some change is expected nevertheless.

It is expected that the FDM changes this prediction because of three phenomena: (i) change in the rate
of orbital decay because of the presence of the condensed core; (ii) since the FDM produces a homogeneous
core, a mechanism similar to the ”core stalling” observed in N-body simulations can take place and reduce or
eliminate drag from dynamical friction; and (iii) the way dynamical friction is calculated must be modified by
the presence of an object with large de Broglie wavelength, a quantum mechanical extension to the calculation
of dynamical friction must be done.

An interesting puzzle that can potentially be explained by a modified dynamical friction is the puzzle of the
Fornax globular clusters. From the standard dynamical friction expected for CDM and baryons it is expected
that globular clusters orbiting Fornax should have rapidly fallen towards its center to form a stellar nucleus.
However, there is no signal of mergers and we detect 5 globular clusters orbiting Fornax.

In Hui et al. (2017) only the last effect is described and simulated for different parameters the orbital decay
times for Fornax in CDM and in the FDM cases. They found that in FDM the orbital decay time is longer,
and four of the five decay times simulated are bigger than 10 Gyr or more, thus explaining the puzzle for why
the globular cluster in Fornax survived. More simulations and observations are needed in order to confirm this
claim, but the FDM model seems to address the dynamical friction puzzle. The ideal is to have the microscopic
theory describing dissipation in the FDM model.

These qualitative results are confirmed in (Bar-Or et al. 2019) using the classical two-body relaxation, showed
above. See also results for how dynamical friction alters inspiral systems (Bar-Or et al. 2019).

Finally in Lancaster et al. (2020), a detailed analytical and numerical study of dynamical friction in the
FDM model was performed. To describe the dynamical friction in this model, they describe the dissipation
that a perturber moving in a condensate causes. They work this dissipation theory for point-sources (satellites),
extended satellites and point-like satellite in a FDM background with finite velocity dispersion. This analytical
theory is then verified by their numerical-simulation that solves the Schrödinger–Poisson system in the presence
of such perturber satellite, showing good agreement with the analytic methods. This framework is applied to
the cases of the Fornax globular cluster, but also to the Sagitarius (Sgr) stream and the Large Magellanic
Clouds (LMC) (we will see about those systems in more detail in Sect. ??). For the Fornax, they find that if
the mass of the FDM model is m & 10−21 eV this model stops explaining the Fornax globular cluster merging
times, which is in agreement with the mass bounds necessary for the FDM to solve the small scale problems.
For Sgr and LMC it is found that the dynamical friction on those are described by the classical limit, described
by the Chandrasekhar formula. More simulations need to be done to confirm this, and it is very important
to understand the dynamical friction in this regime since these bodies have a strong influence in the MW,

44 One thing to be attentive here is that heating or diffusion is the term used for the injection of energy in the orbit of the
macroscopic system by the FDM. This might cause an increase in the velocity dispersion, which leads to an expansion of the
system, or not depending on the radial profile of the galaxy (see (Bar-Or et al. 2019) for more details).
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and are the target of many studies and observations. These results already show that this modified dynamical
friction in the FDM model can maybe explain some interesting astrophysical observations which might be a
good opportunity to measure the ULDM on galactic scales.

Clusters: most massive halos

The FDM can also affect clusters. For distances larger than the de Broglie wavelength of the FDM, it is
expected that DM behaves as standard CDM and that the halo enveloping the soliton has a NFW profile. This
can be seen numerically for the mass range 109M� .Mvir . 1011M� (Schive et al. 2014a; Schwabe et al. 2016;
Schive et al. 2014b; Veltmaat and Niemeyer 2016), which gives an estimate for the mass of the central soliton.
Extending this relation to larger halos, the FDM predicts that in the inner regions of clusters there will be a
condensed core, a soliton, with mass:

M ' 1.3× 1010M�

(
10−22

m

)(
Mvir

1015M�

)1/3

. (178)

which is still below the maximum mass for the soliton calculated above for a galaxy. The corresponding half-mass
radius is:

R1/2 ' 25 pc

(
10−22

m

)(
Mvir

1015M�

)−1/3

. (179)

So, the presence of this soliton with this mass and size would be a prediction of the FDM model. But a question
that remains to be answered is the following: is the presence of such solitons in the interior of clusters halos
compatible with merging cluster like the Bullet cluster or the anit-Bullet cluster?

In (Hui et al. 2017) they ask the question if solitons in the center of the galaxies have not been misinterpreted
as super massive black holes. They compare the mass of the central dark region measured from Virgo and show
that this is similar to the mass of the soliton core in a galaxy like Virgo for a mass of the FDM particle of
m ∼ 10−22 eV. However, since the observations from the Event Horizon Telescope of the black hole in the center
of M87 were released, this hypothesis seem to be almost excluded, and it is indeed a super massive black hole
that inhabits the center of this galaxy. We have to wait for more data to confirm this, but this is an exciting
measurement that can also be used to test the FDM hypothesis.

Another interesting fact is that we know that the galaxies host a super massive black hole in their center.
For this reason in (Hui et al. 2017) they investigate the possibility of a super massive black hole to be created
in the center of a soliton. Apparently, the black holes do not grow for the fiducial mass m22, in a condensate
core. Their creation only starts being significant for m & 5 × 10−22 eV, which is in tension with other bounds
in the mass, like the one to solve the missing satellites problems.

4.1.7 Addressing the small scale challenges

Perhaps even more interesting than solving the small scale problems of the CDM paradigm, it is the new and rich
phenomenology that the ULDM present. But the ULDM models can also address these small scale challenges
and reconcile the small scales observations with the CDM paradigm. Usually the scales where the non-CDM
and interesting phenomenology happens coincides with the scales where these models present modifications in
the small scales that are necessary to explain the small scale observations.

We are going to discuss now how this new phenomenology on small scales presented by the FDM can address
the small scale challenges and what are the conditions in the parameter of this class of models for that to happen.
We are only going too discuss the FDM case now, and the conditions in the mass, but one can think that a
similar analysis can be done for the case of SIFDM.

FDM

We want to determine the mass of the FDM candidate. From the discussion above, we saw the there is a
bound for the mass in order to condensate in galaxies 10−25 . m . eV for a typical MW-like galaxy. Later we
saw that, for masses of order of the usual QCD axion mass, around m ∼ 10−5eV, the stable configurations are
very localized and small, far from galactic scales. With that we can already see that m� 10−5eV for the FDM
model. Now, we are going to see other conditions that can bound the mass and show the mass range for the
FDM particle that can address the small scale challenges.

– Halos: minimum size, maximum density and the cusp-core problems:
The general idea why FDM (and all ULDM models) can solve the cusp-core problem is because these
systems naturally predict a core in the center of galaxies. In this core there is no structure formation (Jeans
instability), and for that reason they might prevent the formation of a cusp in the center of the galaxy.
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We are going to investigate here how and for which mass the FDM core size and density can address the
cusp-core problem.
Since we want the non-CDM behaviour to happen inside galaxies, the de Broglie wavelength of the FDM
inside galaxies cannot exceed the size of the galaxy, given by the virial radius: λdB < R = GM/v2. Therefore
R & 1

GMm2 , where M is the mass of the galaxy. We can write that in terms of the half-radius, radius where
half of the mass of spherically symmetric system is contained (Hui et al. 2017)

R1/2 & 0.335

(
M

109M�

)−1 ( m

10−22 eV

)−2

kpc . (180)

This bound on the radius is compatible with the half-light radii inferred from the densities of 36 Local group
dwarf spheroidals (McConnachie 2012) if the mass of the FDM particle is m ∼ 10−22eV.
With the above condition, we can also compute the upper bound in the central density:

ρc ≤ 7.05

(
M

109M�

)4 ( m

10−22 eV

)6

M� pc−3 . (181)

If we compare this bound to the observations from 8 dwarf spheroidals, and we can see for the density to be
comparable to the one measured for these dSph, the FDM mass needs to be m = 8+5

−3 × 10−23 eV for Draco

and m = 6+7
−2 × 10−22 eV for Sextans (Chen et al. 2017). For those masses, the distribution at the center of

the galaxies seem to be cored, alleviating the cusp-core problem.
Therefore, it is necessary a mass of order m ∼ 10−22 eV in order for FDM to solve the cusp core problem.
And we showed that this is compatible with the measurements from dwarf galaxies. However, we are going
to discuss in Section 5.2 that some studies dispute this conclusion.

– Lower bound on the FDM halo masses, and the missing satellites and too big to fail problem:
As we saw before, for the self-gravitating FDM systems, since gravity is attractive, we have coherence on a
finite scale. The size of this core depends on the mass, being larger as the mass gets smaller. So the smallest
radius to be produced in the FDM model are determined by the smallest mass allowed for the particle.
Having a limit for the smallest cores that can be created has important consequences in the abundance of
low mass halos, and it is going to be different in this model than what is given by ΛCDM. We can see
that by calculating the smallest structures formed in the FDM model. This is given when λ = λJ, where λJ

represents the last scales that can suffer gravitational instability. With the Jeans length, we can calculate
the Jeans mass:

MJ =
4π

3
ρ

(
1

2
λJ

)3

= 1.5× 107M� (1 + z)3/4

(
ΩFDM

0.27

)(
H

70km/s/Mpc

)1/2(
10−22 eV

m

)3/2
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This is the minimum mass of substructure created in the FDM model. This is in contrast with CDM, where
halos with mass below ∼ 108M� are highly created, with abundance dn(Mh) ∝ M−2

h dMh. In that sense,
the missing satellites problem is addressed in the FDM model, since halos of smaller masses than MJ are
not created, if m = 10−22 eV. If the mass of the FDM is smaller than that, sub-halos with smaller mass
will form, and the FDM model is not going to address the missing satellite problem anymore. Therefore
this shows that in order to solve this problem, the FDM has a preferred mass of around 10−22 eV. We are
going to see below that tidal disruption can also act suppressing small mass halos, aiding FDM in solving
the missing satellites problem. The too big to fail problem is also addressed by the FDM, since we have a
mechanism to explain the fact that low-mass sub-halos are not formed, making it not necessary to invoke
mechanisms that creates the too-big-to-fail problem as a by product.

Summarizing, in order to address the small scale challenges, which means presenting a cored density profile
inside galaxies and suppressing the formation of small mass sub-halos which would explain the smaller amount
of satellites, the mass of the FDM needs to be of the order of ∼ 10−22 eV. A component with that mass and
presenting the dynamics of the FDM class of models would behave like CDM on large scales and present the
observed structures on small scales.

However, we are going to see in Section 5 that, although for many years this mass range was available as a
possibility for the mass of the FDM, the latest observations have been challenging this mass, and showing that
the FDM has to probably have a heavier mass than the one necessary to address the small scale problems.

4.2 DM Superfluid

In this section we are going to describe the third category of models of ULDM, the DM superfluid. In previous
sections we saw the small scale problems of ΛCDM and how MOND empirical law offered a very good fit to the
rotation curves of galaxies and the scaling relations that emerge from the dynamics of galaxies, which might
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be challenging in the context of ΛCDM. However, as we saw there is no present framework that can explain
MOND, given that the initial proposed theory, the full MOND, and its extensions present serious problems. We
present here an alternative model to DM that has the goal of reconciling CDM and MOND: the DM superfluid.
This model intends to not only solve the problems that the previous models attempt to address but also offer a
mechanism to describe MOND on small scales. In this framework, DM behaves as standard CDM on large scales,
while the MOND dynamics emerges on galactic scales. And this is possible through the physics of superfluidity.

The idea of the DM superfluid model, is that DM forms a superfluid on galactic scales, where superfluidity
arises upon condensation. This superfluid core present in the inner regions of galaxies not only addresses the
small scale challenges of ΛCDM in a similar way as the previous models, but the superfluid described in these
regions behaves following a different dynamics which reproduces the MOND behaviour. This is possible given
that this superfluid is described by a Lagrangian similar to thee one from the MOND theory which is allowed
given the EFT description of the superfluid. In this way, the long-range correlation present in MOND is going
to be given by the behaviour of the phonons which mediate long range forces. Outside the superfluid core, DM
behaves as normal matter as in the previous models. This is the general vision how the DM superfluid model
attempts to describe the behaviour of DM in galaxies.

In the following subsection we will construct the DM superfluid theory showing first in which conditions DM
condensates on galactic scales, following that we will present the theory that describes this superfluid phase.
With that in hand we can calculate the halo profile and rotation curves in order to compare with data and check
the fit of the theory. We present how this model explain many astrophysical systems and possible predictions.
After that we show the limits of validity of this description and its relativistic completion. We briefly describe
how the cosmology works in this model.

This model is constructed by using the fact that in a generic superfluid we can reproduce the exact action
as in MOND. This is a very specific model and serves as a toy model for the understanding of theories of DM
that present an emergent dynamics on small scales. It is important to point out that what is important is for
the model to be able to explain the rotation curves and scaling relations described by galaxies. This translates
into a theory that exhibits long-range correlation on small scales. We present here a very specific example of a
model when this occurs, where the way the long-range correlation is obtained is by restricting the Lagrangian
to behave like MOND on small scales, but this does not have to be the case. The search for a more general
theory where this emerges, with a known microphysics is the final goal. Such a construction is currently being
searched.

4.2.1 Conditions for DM condensation

Before describing how the DM superfluid behaves inside galaxies, we need to determine in which conditions
DM condensates into a Bose Einstein condensate in galaxies. As we saw in the previous section, two conditions
need to be met for condensation: first, we need that all the particles are in a single coherent quantum state,
described by a single wavefunction of the condensate; a second condition is that the DM particles are in thermal
equilibrium, in order to be described by a Bose distribution.

In this section we want to obtain a rough estimate of the bounds in the parameters of the model in order
to obtain this condensed core in the inner parts of the galaxy. For that, for simplicity, we use the criteria for
weakly interacting gases.

Condensate wavefunction and thermalization

We showed in the beginning of this section the condition on the mass for the ULDM particles to condense in
galaxies, showing that they should be in the range 10−25 eV . m . 2 eV. This is an approximate condition for
the case of DM in galaxies, but it gives us an order of magnitude estimation for the mass of the DM superfluid
particles. However, if we remember from Sect. 3, there is a second condition for condensation.

The second condition to form a condensate is that the particles are in thermal equilibrium. The condition
to achieve thermal equilibrium is that the time scale of thermalization must be smaller than the time scale
where dynamical processes happen in the halo, the dynamical time. If this condition is satisfied and thermal
equilibrium is achieved, the condensate is coherent in the entire halo. The time scale of thermalization if given
by the inverse of the self-interaction rate, and the condition for thermalization is given by:

Γ ∼ Υvvirρvir
σ

m
. t−1

dyn = (3π/32Gρ)
−1/2

, (183)

where Υ ∼ ρvir
m

(2π)3

(4π/3)(mv)3 is the Bose enhancement factor, which tells you if a boson is already in the state, the

probability to another boson to be in that state will be enhanced by a factor of Υ . The dynamical time is taken
here as the time it takes to a sphere of density ρ to collapse due to gravity. This condition gives a bound in the
self-interaction cross section:

σ

m
& 0.3

( m
eV

)4 cm2

g
, (184)
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Fig. 13 Left panel: Mass of the superfluid particle with respect to the mass of the halo. The filled are represents the regime where
DM is condensed and behaves as a superfluid, for zvir = 2. Right panel: Approximate calculation form (Berezhiani and Khoury
2015) for the fraction of the particles in the condensate versus in the normal state, for a series of sub eV masses in accordance with
our bounds. We assumed zvir = 0.

where we assumed zvir = 2 and M = 1012M�. If we want that our self-interaction satisfies the merging-cluster
bound (Randall et al. 2008; Massey et al. 2011; Harvey et al. 2015), which is ∼ 1cm2/g, this gives another
bound in mass of the superfluid: m . eV.

From these conditions, we can obtain a few properties of the our DM superfluid condensate:

– Critical temperature: With DM in thermal equilibrium, the temperature can be obtained by the equipar-
tition theorem: kBT = m〈v〉2/2, which is valid for temperatures smaller than the critical temperature. Above
that temperature, the condensate is broken. The critical temperature Tc is associated with the “critical”
velocity vc, than can be read when we saturate the bound (90):

Tc ∼ 6.5

(
eV

m

)5/3

(1 + zvir)
2 mK . (185)

With that, the temperature in a halo of mass M is given by:

T

Tc
∼ 0.1(1 + zvir)

−1
( m

eV

)8/3
(

M

1012M�

)2/3

(186)

– Condensate fraction: As we saw on Sect. 3 at T = 0 it is expected that almost all the particles are in the
condensate. However, at finite but subcritical temperature, as seen in Landau’s theory (Landau and Lifshitz
1980), it is expected that the fluid is going to be a mixture of superfluid and normal fluid, with the majority
in the superfluid. Borrowing from the non-interacting BEC description, this can be estimated as:

Ncond

N
= 1−

(
T

Tc

)3/2

∼ 1− 0.03(1 + zvir)
−3/2

( m
eV

)4
(

M

1012M�

)
. (187)

This formula is only valid for free-particles, and a particle with interaction and trapped in the gravitational
potential has a different power than 3/2, but it serves as an estimate. We can see in the Fig. 13 the condensate
fraction with respect to the mass of the halo for different masses of the DM particle. From this we an see
that for a MW-like galaxy for any mass smaller than eV, the particles are in the condensate, while for higher
masses of clusters, for example, this is not true. Therefore, the mass range from the bound (88) describes a
condensate that condenses on galactic scales.

The above conditions were obtained assuming that the condensate will take the entire halo. However, as
mentioned in Sect. 2.1, virialization occurs through violent relaxation, which is an out-of-equilibrium process.
In this way, the DM superfluid cannot thermalize. What should happen is that first, the halo virialized and the
profile is the expected NFW. After this process, DM particles start to enter thermal equilibrium in the inner,
most central regions of the condensate, where the interaction is more pronounced. In this way, the halo would
have an inner region (r < RT ) where DM is in a condensed state surrounded by the outer part of the halo
(r > RT ) that follows the NFW profile (Berezhiani et al. 2018). Since in this model the goal is to be able to
describe the rotation curves of galaxies, RT needs to be larger than the radius where the circular motion of
stars and gas is observed. For r > RT, the density profile of the halo follows the NFW profile, ρ ∝ r−3. So we
can rewrite the density and velocity with respect to the virial quantities used above: ρ(r) = ρ(R200) (R200/r)

3
,

where for a NFW we can estimate ρ200/ρ(R200) ∼ 5. With that, the thermalization bound becomes:
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which tells us that it is easier to reach thermal equilibrium in the center of the galaxies where the density is
higher. This translates into a bound to the thermalization radius:

RT . 310
( m

eV

)−8/7
(

M

1012M�

)1/7(
σ/m

cm2/g

)2/7

kpc . (189)

For a MW-like galaxy with M = 1012M� if we can measure the the circular velocity up to approximately 60 kpc,

this will translate into a bound for the mass: m . 4.2
(
σ/m

cm2/g

)1/4

eV.

4.2.2 Superfluid dynamics

Since we have determined that DM condenses and forms a supefluidity in the central regions of the halo, we
now need to describe the evolution of this superfluid inside this region. We need to determine the dynamics of
the superfluid in order to be able to calculate the profile of the region of the halo comprising the superfluid and
with the calculate the rotation curves of galaxies. In this section we will describe the effective field theory of
superfluids and show how this is theory reproduces MOND at small scales.

As we saw in the previous section, a superfluid at low-energies is described by the effective Lagrangian that
is invariant under shift and Galilean symmetries:

LT=0 = P (X) , X = θ̇ + µ−mΦ− (∇θ)2

2m
, (190)

where Φ = −GM(r)/r is the external gravitational potential for a spherical symmetric static source. The
thermodynamic pressure is given by P .

We want our theory to describe the MOND dynamics at the regions where it is superfluid. Given this general
Lagrangian for the phonons (190), we want it to describe the MOND Lagrangian (8). For this, we conjecture
that our phonon action is given by:

LDM,T=0 =
2Λ(2m)3/2

3
X
√
|X| . (191)

This fractional power might seem strange from the point of view of a quantum field theory of fundamental fields,
leading to superluminal behaviour and caustics. However, as a theory for the phonons this is not problematic and
it determines uniquely the equation of state of the superfluid. As we can see for the condensate, the background,
where θ = µt, the pressure is given by the Lagrangian density:

P (µ) =
2Λ

3
(2mµ)3/2 , ⇒ P =

ρ3

12Λ2m6
, (192)

where, in the non-relativistic regime, ρ = mn and n = ∂P/∂µ is the number density of condensed particles.
As expected from the result from MOND, this Lagrangian gives us an EoS for the superfluid P ∝ ρ3, which is
what we wanted to reproduce MOND.

To evaluate the excitation spectrum, we write the action for the phonon excitations φ, that can be obtained
by expanding (190) to quadratic order. Neglecting the gravitational potential:

L(2) =
(2m)3/2

4µ1/2

(
φ̇2 − 2µ

m
(∇φ)2

)
, (193)

from where we can infer the sound speed of the phonon excitations:

cs =

√
2µ

m
. (194)

However, only those ingredients are not enough to reproduce a MOND-like force and a coupling between
the phonons and the baryon density needs to be introduced:

Lint = −α Λ

Mpl
θρb , (195)

where α is a dimensionless coupling constant. Although necessary in order to obtain the MOND regime, this
interaction Lagrangian breaks shift symmetry softly, only at the 1/Mpl level. This term is here considered as a
phenomenological term in order to reproduce MOND. In this way, this superfluid theory has 3 parameters: the
mass m, the scale Λ and the coupling α.

The present form of the Lagrangian to obtain MOND is not the only way of obtaining the MOND behavior
in the context of the DM superfluid model. In (Khoury 2016) it was used higher order corrections to generate
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the non-relativistic MOND action, which is inspired in the symmetron mechanism. Using the same Lagrangian
(191) as the leading order Lagrangian, higher order corrections involving gradients of the gravitational potential
are added to effectively modify the gravitational force. This results in the spontaneous breaking of a discrete
symmetry. The symmetry is broken for small accelerations leading to MONDian gravity, and is restored in the
limit of large acceleration leading to Newtonian gravity. In this theory the shift symmetry of the entire system
is maintained. A difference from the present mechanism, as we are going to see later, is that cosmologically all
the DM is in the normal phase, behaving like CDM, and reproducing all the results from ΛCDM. Here we will
describe the method of adding a photon-baryon coupling since this was studied in more detail in the literature.

Finite Temperature

The theory developed above is valid for a T = 0 superfluid. However, in reality, the DM in galaxies has
a non-zero temperature. As we mentioned in Sect. 3, for finite temperatures, this Lagrangian needs to receive
finite temperature corrections. In Landau’s model the finite temperature superfluid consists is described as a
two-fluid theory where a superfluid component and a normal component are present. Those components must
interact with each other. Following this idea from Landau’s theory, at lowest order in derivatives, we can write
the general form of the EFT at finite temperatures and finite chemical potential as a function of three scalars
(Nicolis 2011):

LT 6=0 = F (X,B, Y ) , (196)

where X = X(θ) was defined before with respect to the superfluid variables. The other new components are: B
is defined with respect to the normal fluid three Lagrangian coordinates ϕI(~x, t); and Y represents the scalar
product of the normal and superfluid velocities:

B ≡
√

det ∂µϕI∂µϕI , Y ≡ uµ
(
∂µθ +mδ0

µ

)
' µ−mΦ+ φ̇+ ~v · ∇φ , (197)

where uµ is the unit 4-vector from ϕI(~x, t), and in the last equality of Y we have taken the non-relativistic
limit, so ~v is the velocity vector of the normal fluid component.

There are many ways to construct the finite temperature operators. Our restriction is that we want our
finite-temperature theory to generate the expected MOND profile. To construct such a Lagrangian requires first-
principle knowledge of the microphysics of the superlfuid. Since we still do not have a fundamental description
of the DM superfluid model, we proceed empirically. We suggest the following finite-temperature Lagrangian
for the model:

L =
2Λ(2m)3/2

3
X
√
|X − βY | − α Λ

Mpl
φ ρb , (198)

where the finite temperature effects are parametrized by a dimensionless constant β. When β → 0, we recover
the T = 0 result; we are using the fiducial value β = 2. We included the interaction term so we could represent
the entire action of the model that we are going to use next.

4.2.3 Halo profile

With the Lagrangian of the theory, we can evaluate the halo profile in the superfluid region and, after matching
with an outer NFW profile, calculate the rotation curves of galaxies. And this is what we are going to do in
this section: estimate the halo profile. This will be done in steps. First, we estimate the DM halo profile taking
into account only the density coming from (191). Next, we include the baryons, by calculating the profile for
the full action including interaction. We are going to use here the finite-temperature effective action (198), since
in the case of the T = 0 the perturbations around a static background configuration suffer from a ghost-like
instability. Although phenomenological, it retains the features of the initial superfluid Lagrangian and can give
a more realistic description of the system.

DM halo profile

We can now calculate the density profile of the condenstate, in the superfluid region, assuming that we
have only dark matter and no baryons for simplicity. This is the halo profile given by the different equation of
state that the superfluid has: P ∝ n3, given by equation (192). This analysis is almost the same for the zero-
temperature and finite temperature cases, with accounts for the replacement:Λ → Λ̃ = Λ

√
β − 1. Assuming

hydrostatic equilibrium, for a static and spherically symmetric halo, the pressure and acceleration are related
by:

1

ρ(r)

dP (r)

dr
= −dΦ(r)
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= −4πG
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∫ r

0

dr
′
r′2ρ(r

′
) . (199)
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By making a change of variables ρ(r) = ρ0Ξ and r = ξ
[
ρ0/(32πGΛ̃2m6)

]1/2
, where ρ(r = 0) = ρ0, this equation

reduces to the Lane-Emden equation (with n = 1/2),

1

ξ2

d

dξ

(
ξ2 dΞ

dξ

)
= −Ξ1/2 . (200)

Choosing boundary conditions Ξ(0) = 1 and Ξ
′
(0) = 0, we can numerically solve this equation. We can see

from the change of variables that the size of the condensate and the central density are given by (Chandrasekhar
1967),

R = ξ1

√
ρ0

32πGΛ̃2m6
, ρ0 =

M

4πR3

ξ1
|Ξ ′(ξ1)| , (201)

where at ξ1 the numerical solution vanishes. From the numerics ξ1 ∼ 2.75 and Ξ
′
(ξ1) ∼ −0.5 gives the following

halo radius and central density:

ρ0 ∼
(

MDM

1012M�

)2/5 ( m
eV

)18/5
(

Λ

meV

)6/5

(β − 1)
3/5

10−24 g/cm
3
, (202)

R ∼
(

MDM

1012M�

)1/5 ( m
eV

)−6/5
(

Λ

meV

)−2/5

(β − 1)
−1/5

45 kpc , (203)

With that, we can determine the chemical potential µ = ρ2/
(
8Λ2m5

)
. For m ∼ eV and Λ ∼ meV, we obtain

realistic core sizes, which are of sizes that cover a big part of the halo, as we wanted. For this reason, we choose
the fiducial values:

m = 0.6 eV , Λ = 0.2 meV . (204)

For these values, we have a cored density profile with a condensate core of radius 158 kpc for MDM = 1012M�.
The condensate does not make the entire halo, but we expect that this condensed core is surrounded by a NFW
profile. The central density obtained is smaller than the expected from CDM simulations, which is preferred by
observations. In this way the DM superfluid offers a simple resolution to the cusp-core and the ”too big to fail”
problems. We will see these results in more details in Sect. 4.2.4.

Including baryons

Now, we derive the condensate profile in the presence of baryons. We expect that there is this extra accel-
eration due to the interaction to baryons. This comes from the dynamics of the phonon excitation φ given the
the Lagrangian (198). We are going to assume a static, spherically symmetric approximation: θ = µt + φ(r).
The equation of motion for the phonon is given by,

∇ ·
(

(∇φ)2 − 2mµ̂√
(∇φ)2 − 2mµ̂

∇φ
)

= α
ρb

2Mpl
, (205)

where µ̂ ≡ µ−mΦ. If we ignore the homogeneous curls term, in the limit where (∇φ)2 � 2mµ̂ the solution is

|(∇φ)| (∇φ) ' αMpl~ab , (206)

where ~ab is the Newtonian acceleration due to baryons only. Then acceleration mediated by φ is,

~aφ = α
Λ

Mpl
=⇒ aφ =

√
α3Λ2

Mpl
ab =

√
a0ab , (207)

for a0 = α3Λ2/Mpl, which is exactly the acceleration expected in the deep MOND regime, as showed in Sect.
2.2.4. In the regime (∇φ)2 � 2mµ̂, we recover the Newtonian acceleration given by the baryons. So, in this
model, the total acceleration is given by ~ab, ~aφ, and also ~aDM the Newtonian acceleration from the DM halo
itself (obtained in the previous section), since we have DM in this model (different than MOND).
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Table 1 Summary of observational consequences of superfluid DM from (Berezhiani et al. 2018), showing the behaviour of this
model in each of the systems listed.

System Behaviour
Rotating Systems
Solar system Newtonian
Galaxy rotation curve shapes MOND (+ small DM component making HSB curves rise)
Baryonic Tully–Fisher Relation MOND for rotation curves (but particle DM for lensing)
Bars and spiral structure in galaxies MOND
Interacting Galaxies
Dynamical friction Absent in superfluid core
Tidal dwarf galaxies Newtonian when outside of superfluid core
Spheroidal Systems
Star clusters MOND with EFE inside galaxy host core — Newton outside of core
Dwarf Spheroidals MOND with EFE inside galaxy host core — MOND+DM outside of core
Clusters of Galaxies Mostly particle DM (for both dynamics and lensing)
Ultra-diffuse galaxies MOND without EFE outside of cluster core
Galaxy-galaxy lensing Driven by DM enveloppe =⇒ not MOND
Gravitational wave observations As in General Relativity

Halo profile algorithm

Having developed the theory of the superfluid DM above, now we want to evaluate the density profile of the
DM halo and the rotation curves, and compare it with the data to make a first proof of concept of the model.
To evaluate the rotation curve, we need to determine the circular velocity with respect to the radius.

As discussed in our model the galaxy contain a superfluid core in the central region of the galaxy surrounded
by a NFW profile envelope. So in order to calculate these quantities for the galaxy we first need to evaluate
them inside the superfluid core, and then at R = RNFW match the density and the pressure obtained for the
superfluid ρSF and PSF, to the ones given by the full NFW profile.

For that, we need to evaluate these quantities in the superfluid phase. In order to obtain the halo density
profile, we need to determine the total mass of the halo M(r). The rotation curve is the circular velocity with
respect to the radius, given by a = v2

circ(r)/r where a = ∂Φ/∂r. So we need to determine the gravitational
potential Φ in order to calculate the rotation curve and, also to determine M(r). The Poisson equation in the
superfluid region is given by:

∇2Φ = 4πG (ρSF + ρb) . (208)

The baryon density is given by the observations, while the superfluid density we can obtain from our theory by
differentiating our Lagrangian (198) with respect to Φ,:

ρSF =
2
√

2m5/2Λ
[
3(β − 1)µ̂+ (3− β) (~∇φ)2

2m

]
3

√
(β − 1)µ̂+ (~∇φ)2

2m

, (209)

where we can see that ρSF = ρSF(Φ, φ). So, in order to solve the Poisson equation, we need the equation for φ,
which is given by its equation of motion (205). The system of equations we need to solve is given by (208) and
(205), which can be very intricate to solve. One approximation that can be done to simplify this is to assume
that baryon distribution is spherically symmetric (which we know it is not true, but used as a simplification).
With that, the system can be solved numerically. This is done in (Berezhiani et al. 2018). After having this,
this solution needs to be matched to the NFW profile that describes the outskirts of the halo. With that, it is
possible to evaluate the density profile and the rotation curves of galaxies.

4.2.4 Observational consequences

In this section we will describe the main observational consequences of the superfluid DM. A summary of all the
effects already worked out can be seen in Table 1. This table compiles a list of the behaviour that this model
has in different systems. We describe in this section some of those results, but point to (Berezhiani et al. 2018)
for a detailed explanation of each of those cases.

In Table 1, EFE stands for external field effect, and it reveals an interesting characteristic of the superfluid
DM model. This effect is an example from kinetic screening in scalar field theories, where in the presence of
gradient interactions the scalar acceleration, given by the non-linearities in the scalar field gradient, can suppress
scalar field effects in gravity, making the system behave as standard gravity theory. This effect was an essencial
aspect of MOND, but in the DM superfluid model this effect is present in the superfluid cores, coming from
the phonon non-linearities. With this, we can see that for satellite galaxies that are inside the superfluid core
should follow a MOND-like dynamics, while more distant satellites are outside the core, and therefore should
follow Newtonian dynamics. For more details, see (Berezhiani et al. 2018).
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Since it is going to be used a lot in this section, we remind Landau’s conditions for superfluidity is that the
fluid velocity (vs) is smaller than the superfluid sound speed cs, vs < cs.

– Galaxy rotation curves:
In (Berezhiani et al. 2018) the rotation curves of IC 2574, a low surface brightness galaxy, and UGC 2953, a
high surface brightness galaxy, were numerically calculated using the method developed above, as a proof of
concept of the galactic dynamics that the DM superfluid is able to reproduce. Since for the theoretical pre-
dictions a spherical baryonic distribution was assumed to simplify the calculations, and since this is far from
the actual distribution of baryons, in these calculations a hybrid method, mixing the results calculated with
the spherical distribution, was implemented. In this, the acceleration is corrected for the actual distribution
leading to:

~ahybrid = ~ab,real + ~aDM + ~aphonon , (210)

where ~ab,real is the acceleration computed from Poisson’s equation for a non-spherical baryon distributions;
~aDM the Newtonian acceleration from the DM halo using spherical baryon distribution; and ~aphonon from
(207) sourced by ~ab,real, but with Newtonian potential from the spherical case. Although calculated in the

hybrid method, ~aphonon ∼
√
a0aN,b as expected in MOND regime.

The fiducial parameters used for this numerical calculation were m = 1eV, (σ/m) = 0.01 cm2/g, which are
optimal for having a superfluid core that encompasses the baryonic disk of the galaxy, while still within the
bounds to agree with cluster observations; Λm3 = 0.05 meV× eV3; and α = 5.7. The rotation curves can be
seen in Fig. 14.

1. LSB galaxy: As pointed out before since these type of galaxies are DM dominated, the rotation curves
from LSB are expected to have a slow raise before reaching the plateau region. As we can see in the
left panel of Fig. 14, our model reproduces the observed rotation curve for IC 2574, represented by the
orange points, very precisely for the parameters chosen.
The size of the superfluid core obtained for this galaxy is RSF ∼ 40 kpc, which here is represented by the
NFW radius where the profile is matched with a NFW profile and has a close value to RT . Relative to
R200 ∼ 57 kpc for this galaxy, the superfluid core is relatively large encompassing 58% of the total DM
mass of the halo.

2. HSB galaxy: The rotation curve features of HSB galaxies are known to be hard to be reproduced. We
saw that MOND empirical theory is successful in reproducing those features. It is interesting to see if
the superfluid DM model is also able to reproduce it. The rotation curve for UGC 2953 is shown in the
right panel of Fig. 14, using the same conventions as for the LSB. The radius obtained for the superfluid
core in this case is RSF ∼ 79 kpc, which is small in comparison to R200 ∼ 245 kpc. Only 24% of the total
mass of DM is in the superfluid core. The difference from the LSB results is the red curve, where the
total DM mass is set by the ΛCDM abundance matching value of M = 65M�. For the red curve, we get
a bigger superfluid radius, RSF = 93 kpc, which is still significantly smaller than R200 = 446 kpc. The
rotation curves seem to fit the data well, showing a smaller value but still compatible with observations
for the velocity in the point where the curve turns to flat. Also, the superfluid DM show a slight rise in
the end of the rotation curve, which is compatible to the data but not existent in MOND.
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Fig. 14 Predicted rotation curves evaluated in (Berezhiani et al. 2018). Left panel: Rotation curve for the LSB galaxy IC2574.
The orange points are data from (Lelli et al. 2016) assuming a distance of ∼ 3 Mpc (Tully et al. 2008), the black and red curves are
the predicted curves for MDM = 20Mb and 50Mb. The gray band corresponds to two values of a0 ∈ (0.6, 1.2)× 10−8 and the blue
band two values of Λ ∼ (0.02, 0.1)meV. Right panel: Rotation curve of UGC 2953. The orange points are data from (Noordermeer
et al. 2007) with all the parameters like in the left panel figure, but the red curve where MDM = 65Mb.

In general, it seems that the superfluid model reproduces the rotation curves of LSB and HSB galaxies. Also,
the BRTF relation is satisfied, as expected. Of course, this calculation shows a proof of concept and the
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rotation curves of many more galaxies with different characteristics need to be fitted, also to help determine
the parameters of the theory, which were chosen here. However, it is expected that the behaviour of the
rotation curve is similar to the fits shown above for different types of galaxies inside the superfluid core, only
changing the size of the core depending on the galaxy.

– Dynamical Friction: From the very definition of superfluidity, flow without friction, we can expect that
in these models in the inner regions of galaxies, where superfluidity emerges upon condensation, dynamical
friction to be absent. This might lead to interesting astrophysical consequences and help understand some
puzzles with CDM (Hui et al. 2017; Ostriker 1999), while testing the DM superfluid model.
One example of an observation that can be explained by this characteristic of superfluids is the velocity of
galactic bars in spiral galaxies, which are expected to have been slowed down by dynamical friction, but are
measured to be nearly constant which is consistent with no dynamical friction.
Another interesting puzzle directly linked with dynamical friction is the Fornax globular clusters, as we
already mentioned above. In the presence of a superfluid in the halo, given the absence of dynamical friction,
these globular cluster should not necessary have merged with Fornax. The effect expected for the case of a
superfluid is more pronounced than in the FDM model, for example. This shows that these type of system
can offer an opportunity to test these ULDM model.
However to use these observations to test these models we need to really understand what is the behaviour
of dynamical friction in the DM halo. For that a microscopical description of a superfluid theory with
dissipation is necessary, and that is what is shown next.

The simple picture that in a superfluid there is no friction is a simplification. A superfluid can suffer
dissipation, when its internal degrees of freedom, are excited out of the condensate, resulting in a mixture
of superfluid and normal particles, or even the complete depletion of the condensate. In those cases, then
the system exhibits friction. To fully understand how friction and dissipation in the superfluid takes place,
one needs to work out the superfluid theories presented in Sect. 3 in the presence of dissipation. To describe
dissipation, one needs to study the motion of an impurity, a particle moving in the superfluid represented by
a real scalar field χ. In general lines, dissipation is described in the following way: if an object passes through
this superfluid, this is called an impurity. When this happens, two things can happen: (i) if the object is
moving through the condensate with a velocity bigger than the superfluids sound speed, v > cs, dissipation
of the superfluid takes place, given that the moving object transfers energy to the internal degrees of freedom
of the superfluid. At low energies, the only accessible degree of freedom is the phonon, so the passage of such
an impurity excites phonons out of the superfluid and the radiation of phonons occurs. The rate of phonon
emission,describes the dissipation of the superfluid. The If the impurity passes through the condensate with
subsonic speed, then there is no dissipation and the particle travels without friction.
This was discussed in detail in (Berezhiani et al. 2019). The regime of validity of such a theory in the presence
of dissipation is discussed in (Berezhiani 2020), and it is an extension to the discussion presented in Sect. 3,
where we assumed the limit without dissipation.
The theory with dissipation was worked out for the simplest superfluid example, the interacting BEC de-
scribed by the microscopic Lagrangian of a self-interacting complex field (45), with the presence of an
impurity,

L = −|∂µΨ |2 −m2|Ψ |2 − g

2
|Ψ |4 − 1

2
(∂χ)2 − 1

2
M2χ2 − 1

2
gint χ

2|Ψ |2 . (211)

We are going to work with the Lagrangian which actually describes the SIFDM model, but that is the
simplest model to understand superfluidity. We are interested, as before, in the non-relativistic case and low
energy regimes. To study the dissipation of phonons, we perturb this Lagragian and work with the linear
theory. The process that we want to study is the dissipation of the superfluid radiating phonons caused by
the motion of the impurity, with Φ, the Newtonian potential behaving as the mediator of this process. This
can be described by the process (at first approximation) χ → χ + π, and the rate of this process can be
computed.
As discussed in (Berezhiani 2020), it is important to reach the correct result to consider the higher order
derivatives of the phonon effective action, like we did in (45) that gives rise to the higher order k4 term in
the dispersion relation, together with the higher order terms involving the impurity field. With that it is
possible to calculate the energy dissipation,

|Ė| =
∫
ωk dΓ ∝

n g2
int k

4
∗

m3M2V
, (212)

where dΓ = (q/Ein
χ )|A|2 δ(4)(pin

χ − pf
χ − pf

π) (d3pf
χ/E

f
χ)(d3pf

π/E
f
π) is the rate of the process described above,

with ‘in’ indicating the initial values before the collision and ‘f’ indicating final values. The initial momentum
of the impurity is pin

χ = (M +MV 2/2, MV) and with k∗ given by k2
∗/2M + ωk∗ = k∗V . With that, we can
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determine the friction force in the system:

|F | = |Ė|
V

=
mng2

int

M2

(V 2 − c2s )2

V 2
. (213)

This shows that the friction force is not discontinuous, given having friction or no friction in the case of
having a superfluid or not, as suggested by Landau, but actually it varies monotonically with the velocity. In
the limit where V is equal to the sound speed, then the friction force vanishes, as expected for a superfluid.
If we include gravity in this system, we have an extra term coming from the coupling to gravity which
modifies the dispersion relation for the superfluid as shown in Sect.s 3.3 and 4.1.4

ω2
k = −m2

g + c2kk
2 +

1

4m2
k4 , (214)

where there is an additional tachyonic mass term from the gravitational contribution, given by m2
g ≡ 4πGρ0.

The presence of this term modifies the Jeans scale and Jeans instability occurs when k > kJ = 2m2c2s (−1 +√
1 + (m2

g/m
2c4s )). In this case, as shown in (Berezhiani et al. 2019), the force evolves monotonically with

the velocity. However, it never reaches zero friction for subsonic velocities, when there is the superfluid,
because of the Jeans instability. This shows that the dynamical friction in a superfluid is more complex than
the simple dichotomy of absence or presence of friction if there is or not a superfluid. This is an active field
of research and might lead to interesting observational consequences for the DM superfluid and SIFDM,
which is the model worked out here.

– Galaxy Clusters: In a simple way, following the analyzes in Sect. 4.2.1, clusters have large dispersion
velocities, and at large distances, of order of R200, Υ is going to be small and thermal equilibrium cannot be
achieved. The DM in clusters is in the normal phase. However, as we saw for galaxies, in the central regions
the density increases and thermal equilibrium may be achieved. In clusters only a very small amount can be
in the superfluid state, since observations exclude that clusters are largely in the superfluid regime. We can
then see the bounds in our mass in order to have a small amount of superfluid component in clusters that is
not in tension with data. We assume that RT /R200 . 0.1, which gives, using the relations from Sect.s 4.2.1
and 2.1:

RT . 200

(
M

1015M�

)1/3

kpc . (215)

We can now repeat the analysis of thermal equilibrium done in Sect. 4.2.1. However, for such a small RT in
comparison to the cluster size, we use the full NFW profile for the halo. This yields a constraint in the mass
of the DM particles:

m & 2.7

(
σ/m

cm2/g

)1/4

eV . (216)

This combined with the condition from thermalization in galaxies gives the allowed range for the DM mass:

2.7 eV . m

(
σ/m

cm2/g

)−1/4

. 4.2 eV (217)

From the tightest constraints from approximately 30 merging systems (Harvey et al. 2015), σ/m . 0.5 cm2/g.
This value is in accordance with the one from Sect. 4.2.1, and from the constrain above it gives a DM mass
between 1.5 eV . m . 2.4 eV. For DM superfluid in this mass range, we have condensation inside galaxies
and the condensation in the interior of cluster happens for very small radius, appearing not to be in conflict
with what is expected from observations. This constraint can be made broader by assuming a more realistic
and not constant cross section. A quantitative analysis via numerical simulations would be ideal to check
this result.

– Galaxy mergers: The behaviour of merging galaxies is an interesting question, given the superfluid nature,
the absence of friction, proposed for the inner core of galaxies. In the absence of friction, it is expected that
the merger would make the galaxies pass through each other without interacting. But the existence of these
superfluid phases in these merging systems is going to depend on the comparison between the infall velocity
for the merging galaxy and the sound speed of the phonon, given by the Landau criteria.
– vinfall & cs - In this regime, the halos are driven out of equilibrium, so coherence of the condensate is

broken and the halo will be in the normal phase. The merging process will proceed as in ΛCDM, where
mergers are fast due to dynamical friction. Thermal equilibrium and condensation will be achieved in
the merged halo after some time.
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– vinfall . cs - In the case of subsonic velocities, the DM halo is in the superfluid phase, and the superfluid
cores will pass through each other with almost no dissipation. In this case, dynamical friction is reduced
taking a much longer time to the system to merge, and possible multiple encounters.

In our case, the phonons have sound speed cs =
√

2µ/m, and for the fiducial values adopted (204), cs ∼
220 km/s for a 1012M� halo. This needs to be compared with the infall velocities of galaxies of a merging
system to see how the merger dynamics proceeds.

– Merging Clusters:
The Bullet cluster is a system of two merging cluster that was very well investigate observationally. It
represents one of the best evidences of the existence of DM (and against alternatives like MOND). This
is seen by a segregation in the position of the mass peak (highest concentration of total matter) given by
lensing that probes all the matter content, and the one from X-ray measurements, which measures the
baryonic matter. This is consistent with the CDM picture, where the DM in the merging processes due to its
negligible interaction passes through almost without interaction, while the baryons are slowed down. This
poses a problem for theories that do not have DM, like full MOND.
By construction, and as it was seen above, in this model clusters do not develop a condensed core of cluster
size and have most of the DM in the normal phase. However, the galaxies inside the clusters have a condensed
core, and the cluster can develop smaller sized cores in its inner regions. Therefore, when clusters merge,
the presence of a core or not also depends if the merger is subsonic or supersonic, obeying or not Landau’s
criteria like we saw for the merging galaxies.
The outcome of the merging depends on the infall velocities, which determines if most of the DM is in the
superfluid phase or in the normal phase in each of the merging clusters. If the infall velocities are subsonic,
the superfluid cores are present, and most of the DM will be in the superfluid phase. Any collision between
a cluster where DM behaves like a superfluid will follow without dissipation, with the clusters pass through
each other without friction. Now, the DM in the normal phase presents self-interactions. Therefore the
collision of two clusters in the normal phase would be slowed down due to these interaction.
In the case of the Bullet cluster (Berezhiani and Khoury 2016), in order to be consistent with observations,
at least the sub-cluster must be in the superfluid phase. As we can see, the sound speed of the phonon
for the sub-cluster (Msub ∼ 1014M�) is, for our fiducial values, cs,sub ∼ 1400 km/s, while for the main
cluster (Mmain ∼ 1015M�) is cs,main ∼ 3500 km/s. The relative velocity between the clusters is ∼ 2700 km/s
(Springel and Farrar 2007; Lage and Farrar 2015). If we take this to be the infall velocity, we can see that the
sub-cluster is in the superfluid phase, while the main cluster is in the normal phase. With that, the clusters
will merge without dissipation and pass through each without friction, as it is expected from observations.
For the Abell 520 “train wreck” (Mahdavi et al. 2007; Jee et al. 2012; Clowe et al. 2012; Jee et al. 2014),
another merging cluster system, the DM superfluid model predicts a subsonic merger, with two peaks
representing the superfluid component, compatible with the lensing map, and a peak during the normal
component, coming from the X-ray luminosity peak. This shows that the DM superfluid framework can
accommodate not only the dynamics on galactic scales, but also explain clusters and its merger events.

– Gravitational lensing:
In the case of the full MOND theory, or its relativistic completion TeVeS, because of the absence of DM to
be able to explain the relativistic regime makes necessary the introduction of a complicated non-linear term
between the scalar field of the theory and baryons, which should also couple to a time-like vector field in
order to give the correct gravitational potential to be able to explain gravitational lensing.
In the case of the DM superfluid, since the theory has DM, we have the superfluid component described by
the phonon scalar field, and we have the normal component which provides the time-like vector field uµ.
The gravitational potential is then sourced by both dark matter and baryons, as expected.
As we have that the superfluid core resides in the inner part of the galaxy, surrounded by an NFW envelope,
gravitational lensing will come primarily from this NFW outter part.
Recently, the DM superfluid model was studied in the context of strong lensing (Hossenfelder and Mistele
2019).

– Gravitational waves:
In the superfluid DM, different than in MOND, the superfluid core is locates in the inner regions of the
halo and the outskirts of the halo have a NFW profile. So the gravitational lensing signal comes from this
outer part of the halo and it behaves like in the case of GR+CDM. This means that photons and gravitons
propagate at the speed of light travelling along the same geodesics. This is in agreement with the recent
constraints from the gravitational waves from neutron stars merger GW170817 (Abbott et al. 2017), which
rule out relativistic completions of full MOND (Boran et al. 2018).
The implications for the gravitational waves in the case where the phonon has a non-vanishing sound speed
was considered in (Cai et al. 2018), together with its observational effects in future GW experiments.
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Specifying the microphysics of the DM superfluid particle can also yield other signatures in the produced
gravitational waves, like chirality, as done in (Alexander et al. 2018).

4.2.5 Validity of the EFT

In this section we are going to scrutinize the validity of the EFT construction used, verifying the regimes where
this leading order EFT is valid, and the regimes where the theory obeys the Landau criteria for superfluidity.

Higher-order derivatives

First, we need to check if in our regime and for the parameters of the model, it is valid to ignore higher
order terms in the EFT. As we saw above, the EFT is constructed by including all the terms which are invariant
under shift symmetry. We retained only the first order contributions, given that we are working in the low-
energy limit. Higher order terms involve more than one derivative per field. Higher order contributions to the
quadratic Lagrangian for the phonon (193), can contain terms of the form:

Lhigher−order ⊃ Λm3/2µ
3
2−n∂nφn ∼

(
Λm3/2µ3/2

)1−n
2

∂nφnc , (218)

where ∂ → ∂t or cs~∇, and φc = Λ1/2m3.4µ−1/4φ is the canonical variable. The scale that controls these higher

order terms is given by Λs =
(
Λm3/2µ3/2

)1/4
, which we call the strong coupling scale. So, higher order corrections

can be neglected when:
1

Λs

∂2
rφ

∂φ
∼ 1

Λr
� 1 . (219)

This is the general condition for ignoring the higher order corrections in a EFT given by the Lagragian we
described here. Given this, we an easily see that the approximation of ignoring these terms breaks for small
sound speeds.

However, specializing to the parameters of the DM superfluid model described here, and using the profile
obtained in (202), which determines µ, the strong coupling scale is given by the DM superfluid model:

Λs ∼ meV

(
MDM

1012M�

)3/10 ( m
eV

)6/5
(

Λ

meV

)2/5

. (220)

For the fiducial parameters, Λs ∼ meV. So, higher derivatives are suppressed if r � 0.2mm, which is clearly
satisfied on astrophysical scales.

Criteria for condensate coherence

An important criteria to verify the validity of the superfluid description we are using is to check if our
superfluid obeys the Landau criteria. As we saw in Sect. 3.2 the criteria for the system to transports charge
without dissipation, leading to the coherence of the BEC to be maintained, is that the velocity of the superfluid
is smaller than the critical velocity:

vs � vc ∼
( ρ

m4

)1/3

. (221)

where the critical velocity must be non-vanishing. In our case, in Sect. 4.2.1, we already evaluated the conditions
for DM to be condensed in the center of galaxies.

We can estimate vc by using the halo mass density ρ = (2m)3/2mΛ
√
|X| ∼ 2m2Λ

√
κ, where we assumed

MOND regime in the last equality and κ = mµ̂, which gives us:
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r
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, (222)

where Mb is the baryon’s mass. The superfluid velocity id given by vs = ∂rφ/m ∼
√
κ/m, which yields:

vs ∼
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. (223)

With that, using(221) and assuming spherical symmetry, we an determine thee radius where superfluidity can
occur:

r �
(

Mb

1011M�

)1/2 ( m
eV

)−1/2
(

Λ

meV

)−5/6

kpc . (224)

We can see that this condition is satisfied in the central regions of galaxies, and we have coherence of the
condensate and superfluidity in those scales.
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Solar system

At solar system scales the bounds on deviation from standard Newtonian gravity are very tight, and these
measurements do not allow deviations from the Newtonian dynamics. Full MOND is in tension with these
bounds. However, the DM superfluid scenario fits well into the Solar system bounds. We can see that using the
coherence bound for the condensate (221). For that we need to evaluate vs and vc.

The superfluid velocity in the vicinity of the Sun (Mb = 1M�) is given by:

v�s = 5
( m

eV

)−1
(

Λ

meV

)−1/3
AU

r
, (225)

where r is the distance to the Sun and AU is the astronomical unit, the average distance between the Earth and
the Sun. The critical velocity of the Milky Way galaxy (for Mb = 3 × 1011M�) evaluated at our solar system
(r ∼ 8 kpc) is:

vMW
c ∼ 0.02

( m
eV

)−2/3
(

Λ

meV

)−2/9

. (226)

We can see that the coherence bound v�s � vMW
c is obeyed for distance much larger than the solar system

scales:

r � 250
( m

eV

)−1/3
(

Λ

meV

)−5/9

AU . (227)

Therefore, on distances like the solar system, DM is in the normal phase since the condensate loses its coherence,
and obeys standard Newtonian gravity.

4.2.6 Relativistic completion

As we saw in Sect. 3.3, the description of a superfluid is given by a weakly self-interacting field theory with
global U(1) symmetry. The symmetry is spontaneously broken by the superfluid ground state of a system at
chemical potential µ. In the previous section, where we defined this field theory for superfluids, we added a
2-body self-interaction, g−3|Ψ |4. This gives an equation of state P ∝ n2. As we saw in the previous section, the
pressure that describes the interaction in the Madelung equations has the form of the pressure of a barotropic
fluid. For a three-body interaction, the equation of state is given by P ∝ n3. For the DM superfluid, in order to
reproduce MOND, we wanted to have a theory that gave P ∝ n3. So one might think that the DM superfluid
could be described by the microscopic theory of an interacting BEC with three-body interaction. However, we
are going to show now that this is in fact not the case, since those theories give a Lagrangian with different
signs.

3-body interaction

Lets consider now like before that the self interacting theory with U(1) symmetry that gives us the superfluid
has a 3-body interaction, instead of a 2-body one. The relativistic action of this theory is given by:

L = −|∂Ψ |2 −m2|Ψ |2 − g3

3
|Ψ |6 , (228)

where g3 > 0 for stability. Like before, this theory conserves particle number. Since we are interested in the
non-relativistic (NR) theory, replacing Ψ = ψeimt and taking the NR limit gives us:

L =
i

2
(ψ∂tψ

∗ − ψ∗∂tψ)− |∇ψ|
2

2m
− g3

24m3
|ψ|6 . (229)

With that, we can calculate the equation of motion, which gives us the Schrödinger’s equation:

− i∂tψ +
∇2ψ

m
− λ

8m3
|ψ|4ψ = 0 . (230)

The condensate is described by the background solution, at zero temperature: ψ0 =
√

2mveiµt, where µ =
λv4/2m. The excitations are given by:

ψ =
√

2m (v + ρ)ei(µt+φ) , (231)

where ρ is the gapless mode and φ is the Goldstone boson associated with the broken U(1). At low energies, we
substitute this into (229) and integrate out the gapless mode:

L =
4

3
m

(
µ+ φ̇− (∇φ)2

2m

)[
2m

λ

(
µ+ φ̇− (∇φ)2

2m

)]1/2

=
4

3

(
2

λ

)1/2

m3/2X
√
X , (232)
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which is the action to leading order in the derivative expansion, with X = µ + φ̇ − (~∇φ)2/2m. This is very
promising since the theory with a 3-body interaction gives a low-energy Lagrangian with the same exponent as
the one we need for MOND and for the effective Lagrangian P (X) for the EFT of superfluids. However, it has
the opposite sign, given that g3 > 0! As we saw before, the limit where g3 < 0 is unstable, and we cannot have
condensation on all scales, superfluidity and MOND.

Phenomenological relativistic Lagrangian

So, the expected description as a theory with 3-body processes is does not work for the DM superfluid model,
where we want to recover MOND behavior in galaxies. It was phenomenologically proposed in (Berezhiani and
Khoury 2015) a relativistic Lagrangian that is able to reproduce our expected Lagrangian (191) in the non-
relativistic regime, which is given by:

L = −1

2

(
|∂µΨ |+m2|Ψ |2

)
− Λ4

6 (Λ2
c + |Ψ |2)

6

(
|∂µΨ |+m2|Ψ |2

)3
. (233)

The scale Λc was introduced in order for the theory to admit Ψ = 0 vacuum. It is easy to see that this action
reduces, in the non-relativistic limit and when Λc � |Ψ |2, this action gives (191). The condition for MOND,
given by Λc can be rewritten as |X| & Λ4

c/(2mΛ
2), which corresponds to:

aφ &
Λc

α2Λ
a0 , (234)

where aφ is the acceleration from the phonon that can be obtained from the action and given by aφ =

α(Λ/Mpl)φ
′
. According to observations, the deep MOND regime is very accurate for ∼ a0/10, which poses

a bound for Λc.
This theory presented here is a phenomenological relativistic version of the DM superfluid. However, it would

be interesting to have a relativistic complete microscopic theory for the superfluids.

4.2.7 Cosmology

After working out the galactic behavior of the DM superfluid model, we need to understand what happens on
cosmological scales in this model. In this section we show how DM superfluid behaves cosmologically. Since we
do not have a proper relativistic theory that we can use to describe cosmology, we make some estimates in order
to understand the behaviour of DM on cosmological scales in this theory.

The first question we would like to answer is if DM is in the superfluid or normal phase cosmologically. We
saw in Sect. 4.2.1 that the critical temperature of the DM superfluid is given by (185), and T/Tc today is around
10−2 for massive galaxies (M ∼ 1012M�). Cosmologically, the temperature is much colder. We can estimate
given that ultra-light candidates for DM, like the DM superfluid, are non-thermal relics. They can be generated,
for example, through a vacuum displacement mechanism (see below for a definition of this mechanism) like the
axion. So, the particles are created when Hi ∼ m, which corresponds to a temperature for the photon-baryon
plasma:

T b
i ∼

√
mMpl −−−−→

m∼eV
50TeV , (235)

which is around the weak scale!
With that, we can rewrite the condition for thermalization (90), given that the velocity and density redshifts

as v ∝ a−1 and ρ ∝ a−3. At matter-radiation equality, we can write this condition as:

m ∼ ρ1/4
eq �

(
ρeq

v3
eq

)1/4

, (236)

where ρeq ∼ 0.4 eV4 and by using that veq = viai/aeq ∼ eV/
√
mMpl is much smaller than one, while vi ∼ 1

since it was created deep into the radiation era. Since T/Tc = (v/vc)2, we have that:(
T

Tc

)
cosmo

∼ veq

( m
eV

)8/3

∼ 10−28
( m

eV

)5/3

. (237)

So, cosmologically, all the DM is in the superfluid state. Once this DM is formed, if condenses and behaves as
a superfluid. However, one question than comes to mind: as we saw previously, in the DM superfluid model in
the superfluid phase the dynamics is give by a MONDian dynamics, instead of Newtonian. Then the question
is: does DM behaves differently than Newtonian on cosmological scales, which can be a problem to reproduce
some known results in cosmology? We can see that this is not the case.

The cosmological temperatures are many orders of magnitude different than the temperatures on galaxies.
For the EFT built for the superfluid to be valid on such different scales, the parameters of the EFT Λ and α need



Ultra-light dark matter 81

to evolve with the temperature. This dependence is estimated in (Berezhiani and Khoury 2015) by making some
phenomenological statements for the theory to match both regimes. A consequence of the introduction of this
variation is that the critical acceleration, given by a0 in galaxies, is now temperature dependent. Therefore, on
cosmological scales the critical acceleration of the theory has a much smaller value than the one from galaxies:
acosmo0 � 10−4 a0. This has an important consequence: although the DM superfluid is condensed on cosmological
scales, the gravity is highly Newtonian on those scales.

This shows to us that a very compelling feature of this model: at the same time it describes the small scale
behavior, given by a MOND-like dynamics, it also recovers the large scale successes of CDM. It also recover the
expected CDM behaviour in clusters, and also in the vicinity of star like in the solar system, where the DM is
in the normal phase behaving like particle DM.

To close the DM superfluid section, we can summarize the global behaviour that this model has on all the
scales. This together with Table 1 describes the phenomenology of the DM Superfluid class.

Cosmological Scales
Condensate
No MOND

−→
Clusters

Mostly no condensate
No MOND

−→
Galaxies
Condensate

MOND
−→

Solar System
No condensate
No MOND

4.3 Simulating ULDM models

We described above the main characteristics of the ULDM models. We showed how we expect the small scale
structures to be suppressed in this model by computing quantities in the linear limit, and showed how this
model presents a core solution for a simplified model of the halo. However, to study the formation of structures
at different scales, and the formation of galaxies which are highly non-linear processes, one needs to resort to
simulations. Cosmological simulations have been one of the biggest tools for the understanding of the non-linear
formation and evolution of structures and galaxies in the past few years, modelling diverse scales and physical
process that are present in those processes. Therefore, to better understand how different the structures are
going to be in the ULDM models, together with modelling some structures that are exclusively present in these
constructions like the presence of cores, interference and vortices, we need to resort to cosmological simulations
(for a summary of the current FDM simulation, see (Zhang et al. 2019; Li et al. 2019)).

The traditional simulation methods present in the literature to study the formation of structures, like N-
body simulations or hydrodynamical simulations, cannot be readily applied to the case of ULDM since they do
not take into account the wave nature of these models. As we saw above it is this wave nature that can lead to
important observational consequences present in these models of DM.

There are two approaches to simulate the ULDM models. One solves the Schrödinger–Poisson system,
composed by the Gross–Pitaevskii equation for a given ULDM model coupled to the Poisson equation; and the
other is given by solving the hydrodynamical equivalent of the GP equation, the Madelung equations. Each of
those approaches have advantages and disadvantages, so they can be considered complimentary.

Schrödinger–Poisson Hydrodynamical-Madelung equations

iψ̇ = − 1

2m
∇2ψ +mΦψ +

g

8m2
|ψ|2ψ +

g3

12m3
|ψ|4ψ + · · · ∂ρ

∂t
+∇ · (ρv) = 0

∇2Φ = 4πGm
(
|ψ|2 − |ψ̄|2

) ∂v

∂t
+ ρ (v · ∇)v = − 1

m
∇ (PQP + Φ+ Pint) .

In the absence of interaction, we have the Fuzzy DM model, and in the presence of interaction, the terms
marked in blue, we have the SIFDM model. The interactions can be a two-body or three-body interactions,
like showed respectively in the last two terms of the GP equation above, or even higher order body collisions
represented in the ellipsis, if this is allowed in the system. These describe fluids with different equation of state.
In the Madelung equations, the interactions are represented by the interaction pressure term Pint, which has the
form of a polytropic fluid. This polytropic fluid can describe different fluids with different equations of state,
that arise depending on the type of interaction. So one can simulate either one of those models using these
system of equations45.

45 Theoretically, one could also simulate a gravitationally bounded DM superfluid model by evaluating its the equation of motion
in the NR regime, obtaining a equation analogous to the GP equation, but with a more complicated form. There is not, to our
knowledge any group that is performing simulations of those models at the moment. We might expect that the more complicated
form of the equations might render a more computationally expensive simulation. For this reason we stick for now to the simulations
of the other classes of models.
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For the simulation that solve the Schrödinger–Poisson equations, also called wave simulations, there are
many groups that are attempting to solve this system using different methods (Schive et al. 2014a; Schwabe
et al. 2016; Mocz et al. 2017, 2018; Edwards et al. 2018; Garny et al. 2020). In general this approach is very
good to describe the small scales, being able to resolve the small structures and taking into account the wave
nature of the condensate, as we can see in the left panel of Fig. 15. With that, this approach predicts the correct
and expected structures on small scales. Being able to resolve the smaller scales, this simulation can resolve and
show the presence of cores in the halos, the granular interference structure in the condensate or the presence
of vortices. However, this approach is very demanding numerically, since it requires a more finely resolution
in order to resolve scales of the order of the de Broglie wavelength. This makes these simulations to be much
smaller in size than the fluid ones, not describing cosmological scales or being able to span many decades in
redshift.

Fig. 15 Figure from (Li et al. 2019) shows wave simulation (left panel), where the SP system is solved, and a fluid simulation
(right panel), where the Madelung equations are solved, of the FDM model with mass m = 10−23 eV. This represents a slice at
redshift z = 5 of the density, given by the color code, and it shows how the wave simulation can resolve the small scales by showing
the interference patterns, that are coarse grained by the fluid simulations.

The simulations that solve the Madelung equations, the fluid simulations, have the advantage of being able
to use the already written and well explored hydrodynamical codes available in the literature. They can be
implemented by adapting those known codes to the case of FDM or SIFDM. The difference from a normal fluid
simulation is the presence of the quantum pressure term, ∇PQP = −n∇Q, where Q = (~2/2m)(∇2√ρ)/

√
ρ.

This term is singular when the density is zero, and the quantum pressure is not well defined in this regime. This
restriction translate into those simulation not being able to resolve the smallest scales, coarse graining through
the granular structure or any other substructure expected in these models. This leads to fluid simulations
predicting a more pronounced gravitational collapse leading to an enhancement bigger than expected in the
power spectrum at small scales (Li et al. 2019).

The advantage of the fluid approach, though, is not only being implemented using the already mature
hydrodynamical codes, but also being able to run much larger simulations than in the wave case, since it is
less computationally expensive. With this method cosmological size simulations are possible. Many groups have
been working on simulating the FDM using the fluid approach, with some variations in the implementations
of the codes and the solvers (Veltmaat and Niemeyer 2016; Mocz and Succi 2015; Nori and Baldi 2018; Zhang
et al. 2018b).

Many research groups are attempting to perform those simulations so we can better understand the behaviour
of the FDM model and reveal possible smoking gun signatures of this model. Those simulations are crucial so
we can understand and better search for these signatures on observations. For this it would be interesting to
have the small and large scales of the simulations resolved. Since the fluid simulations are good to describe the
large scales and the wave simulations the small scales, some groups are exploring the possibility of having hybrid
simulations where both methods are considered for the scales they work better (Li et al. 2019). In (Veltmaat
et al. 2020) another hybrid method is considered where N-body simulations are used to simulate the cosmic
web, while the wave simulation is implemented in the inner halo.

Another simulation that is also hybrid is the AxioNyx simulation (Schwabe et al. 2020). This simulation
actually mixes different dark matter models, having a Schrödinger-Poisson solver built on a cosmological N-
body simulation of CDM and baryons to simulate self-gravitating mixed fuzzy and CDM. This allows to include
in this simulation baryonic effects and some astrophysical processes. With this simulation one can study spherical
collapse and core formation in this mixed DM context. This mixed DM nature of the simulation can be seen in
a suppression in the CDM collapse due to the FDM fraction, while CDM delays the the FDM collapse shrinking
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the Jeans scale. It was also found that both FDM and CDM evolution respond to the same gravitational
potential, although in the center of the overdensities, where solitons form depending on the granule mass which
is determined by the FDM fraction, a large fraction of FDM particles of about 10% of the total DM is present.

More work in the presence of interactions, describing the SIFDM, would also be welcomed, since this would
reveal more about the superfluid nature of this DM scenario and the possible consequences of having a superfluid
core in the inner regions of galaxies.

Simulations of ULDM models are a fast moving and essential field to study these models, and the current
advances are very exciting, which makes us look forward to new results in the near future.

We are focusing in this review on dark matter, in the late time non-relativistic limit

SIFDM/Superfluid - There are a smaller number of simulations for the case of the self-interacting ULDM.
It is important to also consider systems where self-interaction is present, on top of gravitational interaction,
since these systems contain a very rich phenomenology. Depending on their sign these models present different
clustering scales, soliton formation, which in this case can be driven by the self-interaction instead of gravity
alone, and its rates, times and sizes; and effects like dynamical friction work differently.

In (Amin and Mocz 2019), the system of a non-relativistic scalar field in the presence of two-body self-
interaction in an expanding universe was investigated. The main goal of the authors is to study the formation,
clustering and collision of solitons when their formation is controlled by attractive self-interactions, on top of
the gravitational part. They work in the regime where the scales of the problem present the following hierarchy:
m�M � mpl, where m is the mass of the ULDM particle, M controls the interaction scale, and the reduced
Planck mass determines the strength of gravity. In this work they solve numerically the Schrödinger-Poisson
system in the presence of interaction in 3 + 1 dimensions in the presence of expansion, with cosmological
initial conditions. They compare the result of this simulations with analytical results calculated for the soliton
formation time and length scales, the soliton distribution and two-point function of the clustering of the solitons,
showing good agreement between both. The problem then has two instability scales from the self-interaction
and from gravity, as shown separately in Section 4.1. We show in left panel of Figure 16 the power spectrum
of the scalar field. The formation of solitons controlled by the interactions is faster than under gravity alone,
as seen in the right panel of Figure 16. In the presence of those two components, the solitons scatter, merge
and form binary systems, the last only present in the presence of gravity. This shows that the system with
interactions presents significant different phenomenology than in the case of FDM. Therefore, more efforts to
simulate these interacting BECs is necessary, specially in the case of repulsive interaction.

Fig. 16 Figures from (Amin and Mocz 2019). Left panel: Power spectrum of Ψ , with adiabatic vacuum fluctuations initial condition,
for the case with and without gravity.Growth of perturbations occur first through self-interaction instability, backreacting in the
condensate, followed by soliton formation. Right panel: Comoving number density of solitons in simulations with and without
gravity. The fact that when gravity is included effects like mergers occur makes the number of solitons to be smaller in the case
gravity is included.

Another interesting discussion present in this paper is the connections to the equivalent relativistic system:
a relativistic non-linear Klein-Gordon equation. In the relativistic system the equivalent to the soliton is the
oscillon. In this review we are interested in DM, so discussing simulations of relativistic system is not in the
scope of the paper. But it is worth mentioning that there is a large body of literature in this topic (see for
example (Kolb and Tkachev 1994; Amin et al. 2012; Lozanov and Amin 2019; ?)). They describe the mainly
the early universe evolution, but are directly applicable in the context of ULDM.
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Two-fluid approach: As we mentioned in Sect. 3, based on the ideas by Landau, the correct description of a
finite temperature superfluid is using the two fluid model, where there is a normal and a superfluid components.
The description used above for the SIFDM and DM superfluid extend the limit of usage of the zero temperature
description of the superfluids when describing DM in a halo, which should be treated with a finite temperature
approach. An effective extension to include finite-temperatures was attempted for the DM superfluid case. When
simulating the superfluid model, one should use the equations for a superfluid in the two-fluid formalism, where
the system is described as a mixture of a superfluid component (represented with subscript ’s’) and a normal
fluid (represented with subscript ’n’). The superfuid is the component that flows without friction while the
normal fluid is the only of the two that transports entropy and thermal energy.

This is what it was done in (Hartman et al. 2019). They want to study structure formation in the a model
where DM forms a superfluid. For this reason, they solve the hydrodynamical equations that describe this
superfluid. The finite-temperature hydrodynamical equations for the simplest superfluid, the weakly interacting
Bose gas in a trapped potential, are given by (Taylor and Griffin 2005; Chapman et al. 2014):

∂ρ

∂t
+∇ ·~j = 0 ,

∂S

∂t
+∇ · (S~un) = 0 ,

∂~us
∂t

+∇
(
µ+ ~u2

s/2
)

= −∇Φ , (238)

∂~j

∂t
+∇P + ρs(~us · ∇)~us + ρn(~un · ∇)~un + ~us [∇ · (ρs~us)] + ~un [∇ · (ρn~un)] = −ρ∇Φ , (239)

∂E

∂t
+∇ ·

[(
U +

1

2
ρnu

2
n + P

)
~un +

1

2
ρsu
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s~us + µ(~us − ~un)

]
= −~j · ∇Φ , (240)

where ρ = ρs + ρn is the fluid mass density, S the entropy density, ~u is the velocity, ~j = ρn~un + ρs~us is the
momentum density, E is the energy density E, Φ the gravitational potential, following the Poisson equation and
µ = [P + U − ST − (~us − ~un)2/2]/ρ is the chemical potential (P is the pressure, U the internal energy density
and T the temperature).

In this set of equations, the authors set the trapping potential to be the gravitational potential and these
equation can be re-written in an expanding background by transforming to super-comoving coordinates and
using ~v = ~u − H~r. In this way, the model describes the finite-temperature hydrodynamical equations for the
SIFDM model. The authors test the two-body and three-body interactions for comparison.

One challenge of this approach is that the hydrodynamical equations do not include the Landau criteria in
them. To include this explicitly one needs to add dissipative terms. Since this is not completely worked out
analytically, to do that one has to make some assumptions and assume a form for these terms. A very big step
in including dissipation in this theory was worked by (Berezhiani et al. 2019; Berezhiani 2020) and shown above
in the “dynamical friction” subsection of the DM superfluid. This is a work in progress. Until this is worked out
in detail, and avoiding adding unknown dissipative terms, the authors chose to do this numerically imposing
Landau’s condition at every position in the simulation.

They numerically integrate the hydrodynamical equations from redshift z = 100 until today. The authors
found from the simulation that, in SIFDM model, the growth of structure proceeds less efficiently than in
CDM, as expected for the ULDM models, although more efficiently than expected, with the suppression more
pronounced on small scales and at high temperatures. They also study the role of the interaction strength and
of the equation of state.

This numerical simulation presents some limitations giving some of the assumptions and limitations inherited
from the hydrodynamical formalism. For example, in this approach we cannot see the complete dissipation of
the superfluid. Also, correctly adding the dissipation physics would be a big improvement in this description.
However, this simulation represents a very important step towards simulating more realistic superfluids, which
already showed to lead to interesting observations consequences.

4.4 ULDM as dark energy

Ultra-light fields can also behave as dark energy (DE), depending on their mass and on the different theory
they are applied. We can see this in two different cases where the ultra-light field can be used to explain the
acceleration of the universe.

4.4.1 Fuzzy DM

In the case of fuzzy DM, where we have a (non-interacting) ultra-light scalar field in FRW universe, the field
can behave as dark matter, early dark energy or dark energy depending on the mass of this field. The behaviour
of the field depends on how its mass is related to the Hubble parameter. At early times, the ultra-light field
has m � H. In this regime, the field is almost frozen and behaves as DE with w ≈ −1. As m ∼ 3H, the field
starts to coherently oscillate around the potential minimum and to behave as DM, where the equations of state
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averaged over the oscillations approaches zero. Depending on the mass, the oscillating DM phase can happen
at different times of the evolution of the universe.

If the oscillating phase happens after radiation-matter domination, the ultra-light field behaves like DM.
From (Hlozek et al. 2015), we see this happens for m & 10−27 eV. This bound comes from observations from
the CMB and LSS galaxy clustering, and in this regime the ultra-light field can oscillates before the present day
and the field redshifts as DM. More generally, for m . 10−32 eV we can still have the ultra-light field behaving
as DM, since the field starts oscillating before the present time, but in this case the ultra-light field can only
make a fraction of the DM.

For m ∼ 10−33 eV ≈ H0, the field behaves like a quintessence field, if in the presence of a potential, and
it can be the responsible for the late time acceleration. Since the field is virtually frozen until the present
time, or slowly-rolling the potential, with almost constant density, and it behaves very closely to a cosmological
constant. With observations from CMB, we can see that in this case the ultra-light fields have a maximum
bound on the energy density compatible with the expected amount of DE in the universe. For masses around
10−32 eV . m . 10−27 eV, the ultra-light field behaves like DE earlier than what it is expected, and can be
thought as an early DE component.

4.4.2 Superfluid DM - Unified superfluid dark sector

There is another way to explain the late time acceleration using these ultra-light fields, where the acceleration is
not given by this behaving like a quintessence field. This can be done in the context of the DM superfluid, where
the dark energy behaviour is yet another manifestation of the same superfluid that emerges at cosmological scales
at late times, as presented in (Ferreira et al. 2019; Ferreira 2019).

In the previous case and in the case of quintessence, a ultra-light field is a component with a very small mass
m ≈ 3H0, that dominates around the present times and drives the acceleration. Differently, in the framework
we present here, the dark sector is composed only by DM described by a superfluid, without DE. The late
acceleration emerges from the dynamics of this superfluid, and we have a unified model for the behaviour of
DM and DE. We can see how this arises from the model described below.

BECs and superfluids in the laboratory are usually made of atomic species. After the discovery of BEC and
superfluidity, one big evolution in the study of these systems was to study mixtures of condensates where atoms
that compose the fluid that condenses might be at different atomic configurations. This allowed researchers
to explore the richness of the internal structure of the atoms that compose the superfluid, describes a more
realistic system, where atomic transitions are allowed to happen, and also the different dynamics that appears
in systems where more than one species of condensate and superfluid is present.

In this entire section we are using the same formalism as the one defined for the DM superfluid (and the EFT
of superfluids from Section 3.4. In the model we present here, we assume that the superfluid is composed by
two different species, which can be represented by the ground (Ψ1) and excited (Ψ2) state of the dark atom that
composes the superfluid. These species interact through a Josephson interaction (Josephson 1962; Tommasini
et al. 2003)46, which is a contact interaction between the components of the superfluid that has the simple form
Lint ∝ −(Ψ∗1Ψ2 +Ψ1Ψ

∗
2 )/|Ψ1||Ψ2|. So the Lagrangian of this theory is the Lagrangian for the EFT of superfluids,

given by a non-canonical kinetic term, plus the term coming from the interaction. This interaction leads to an
oscillatory potential for the low-energy Lagrangian of the phonons,

L = P1(X1) + P2(X2)− (1− 2Φ)V (θ1, θ2) , with

V (θ1, θ2) = M4 [1 + cos(θ2 − θ1 +∆E t)] , (241)

From the form of the interaction term, the oscillatory potential for the phonons is given by a cosine potential,
where M is the explicit symmetry breaking scale coming from the interaction Lagrangian that breaks softly the
shift symmetry of the phonon action, and that has to be of the order of M4 = 2M2

plH
2
0 ≈ meV, in order to drive

the late time acceleration. The parameter ∆E is the energy gap between the two species, between the ground
and first excited state of the component of the superfluid.

Considering the approximation ∆E � mi, we can see that the superfluid has two distinguished behaviours:
one degree of freedom that behaves like dust, described only by the non-canonical kinetic term that behaves like
DM in the non-relativistic regime as the DM superfluid model, and one that evolves under the influence of the
potential, like what is expected from a field that behaves like DE. The cosine potential is similar to the pNGB
models of DE (Frieman et al. 1995; Kaloper and Sorbo 2006), and it is a special potential for explaining DE
since it only softly breaks the shift-symmetry, and the flatness of this potential is still approximately protected
against radiative corrections, which is one big problem in quintessence models of DE. The late time acceleration
behaviour from this DM superfluid can be seen in the evolution of the Hubble parameter in the NR limit,

2Ḣ + 3H2 = V (θ1, θ2)/M2
pl . (242)



86 Elisa G. M. Ferreira

0.01 0.10 1 10
0.5

1

5
10

50

Fig. 17 Left panel:Evolution of the Hubble parameter for the unified DM-DE model with superfluids in comparison to ΛCDM.
We can see that both model describe the same cosmology given by a period of deceleration where the universe is matter dominated,
followed by an acceleration period, around present times. The unified model deviates from the ΛCDM evolution close to present
and for future times, where the action of the oscillatory potential is more pronounced. Right panel: Evolution of the growth factor
in the unified model in comparison to ΛCDM, and percent difference, showing that those differ for present times given the potential
that describes the accelerated expansion period.

From the left panel of Figure 17 we can see that we have a decelerated evolution, following the behaviour of
DM, followed by a period of accelerated expansion at present time. Therefore, this model behaves like what is
expected by DE, even without the presence of a specific component responsible for the acceleration, and being
a model of DM alone. At future times, this models deviates a lot from the predictions of ΛCDM, as the cosine
potential becomes important.

Although the evolution in this model is very close to ΛCDM, this model presents distinct predictions. This
can be seen by computing the perturbations in this model. One of those predictions is the growth factor, that
in this model deviates from the ΛCDM one by around 10% at present times, as presented in right panel of
Figure 17. Future galaxy surveys might be able to test this deviation.

5 Cosmological and astrophysical constraints, and new windows of observation

Now that we have described our ULDM classes and showed the consequences that these models might have
in cosmology and astrophysics, in this section we are going to show some of the constraints obtained for the
parameters of these theories when the different phenomenology of these models is tested with data.

For most part of this section the constraints are going to be for the FDM model. This model has been much
more explored in the literature than the others, not only because it has been introduced first, but also since it
has only one parameters m (we are assuming in general that the ULDM is the total mass of the universe, unless
stated otherwise). However, we are also going to show some constraints obtained for the SIFDM and the DM
superfluid models. In each part it is stated for which model the constraints are obtained.

We summarize most of these constraints on the mass FDM in Figure 18. As we can see in this figure, this set
of (current) constraint, if they hold, strongly suggests that an FDM with mass of order of 10−22 eV, which was
proposed as the ideal mass that introduces interesting new phenomena on small scales and that addresses the
controversies that appear in those scales, is strongly challenged. For the heavier masses that seem to be allowed
now, the phenomenology of the FDM is closer to the one from CDM.

In the plot we presented only some of the constraints present in the literature. Other bounds obtained from
other observables testing different astrophysical consequences of the ULDM models is presented bellow, together
with a description of the bounds of the figure47.

We just want to emphasize that this bounds are for the FDM model only, and the SIFDM and the DM
superfluid have other sweet spots for the mass of their ultra-light particle. These two models currently are
weakly constrained with not a lot of work done in the literature to constraint the parameter of these models.
For the DM superfluid, as we saw in Section 4.2, the mass is constrained to be 1.5 eV < m < 2.4 eV coming
from the thermalization condition in the halo with cross-sections that are allowed by measurements from galaxy
cluster mergers.

46 The Josephson interaction or Rabi coupling (Josephson 1962; Mahan 2000) is very common in many systems in condensed
matter systems. It is a contact interaction that represents a long-range phase coherence between components, leading to conversion
between the different species. This is used in many systems leading to the very well known Josephson effect, but it is also present
in other effects studied theoretically and experimentally (Usui and Takeuchi 2015; Cappellaro et al. 2017; Bornheimer et al. 2017;
Fernandes and Chubukov 2017; Nicol and Carbotte 2005; Ballagh et al. 1997; Zibold et al. 2010).
47 The bounds presented here assume that almost all the DM is composed by FDM. If one wants to see an equivalent figure that

takes into account the the fraction of the FDM, see Figure 1 from (Grin et al. 2019). This reference also presents a very good review
of the gravitational probes of FDM.
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Fig. 18 Summary of most of the constraints on the mass of the FDM particle discussed in the section49. These bounds assume
that FDM makes most of the DM in the universe. In this figure, the shaded regions represent the excluded regions. The CMB
and LSS bounds come from (Hlozek et al. 2015, 2018) using Planck (2015) TT CMB auto-power and the WiggleZ galaxy-galaxy
auto-power spectrum. The Lyman-α constrains correspond different analysis made in the literature coming, from the darker to
lighter, from (Nori et al. 2019; Armengaud et al. 2017; Iršič et al. 2017; Rogers and Peiris 2020), respectively. The Eridanus II
constraint are both for its existence and for the survival of its star cluster from (Marsh and Niemeyer 2019). The next line presents
the constraints from black hole superradiance (BHSR). The first constraint comes from bounds on the spin of the supermassive
BH (SMBH) in M87, from the measurments obtained by the Event Horizon Telescope (Davoudiasl and Denton 2019). The second
set of bounds comes from (Stott and Marsh 2018), which presents the stringiest bounds from BHSR of ultra-light particles from
stellar BHs and from SMBHs. The global 21-cm signal detected by the EDGES team can also be used to put bounds on the mass
of FDM as shown in (Lidz and Hui 2018; Schneider 2018). The next row refers to bounds on the FDM imposed by testing the
suppression of the sub-halo mass function in comparison with the SHMF from WDM models constrained using strong gravitational
lensing of quasars and from fluctuations in stellar streams (Schutz 2020). In (Lancaster et al. 2020) they compute the different
description that dynamical friction has for the FDM and apply this to the Fornax globular cluster. The next bound comes from
another dynamical effect, which is heating of the MW disk, that can be constrained measuring the velocity dispersion of stars in
the solar neighbourhood (Church et al. 2019). We also include two constraints in the mass assuming that the measured central
density of dSphs, Draco and Sextants should match maximum FDM core size, whcih should be smaller then the virial radius of these
galaxies (Chen et al. 2017). This row also contains the results from the reanalysis of the bounds from dSphs from (González-Morales
et al. 2017) darker region, and (Safarzadeh and Spergel 2019) the lighter shaded region.

5.1 Cosmological constraints: CMB and LSS

We are first going to talk about the constraints and forecasts that can be obtained on the ULDM parameters
using cosmological observations.

5.1.1 CMB and LSS

FDM

We saw in Section 4.1.4 how the angular temperature power spectrum and the matter power spectrum
can be affected by the FDM. We show now constraints obtained in this class of models using measurements
of the CMB power spectrum and of the matter power spectrum. These constraints are obtained in mainly in
two articles. In Hlozek et al. (2015), the authors investigated that using a combination of CMB data from the
Wilkinson Microwave Anisotropy Probe (WMAP), Planck satellite, and also from ground CMB experiments like
the Atacama Cosmology Telescope, and South Pole Telescope, and galaxy clustering data from the WiggleZ. And
in (Hlozek et al. 2018) this analysis was updated, and some additional effects were tested, using a combination
of data from Planck (2013) temperature power spectrum and the WiggleZ galaxy-galaxy auto-power. In these
references they investigate the FDM model, where only one particle is responsible for the FDM.

In those two papers they investigate the effects in the CMB and in the matter power spectrum of a large
range of FDM masses, encompassing masses where the ultra-light particles behave as dark energy. These two
papers also investigate effects that could come from specific models inside the FDM, like the constraining the
axion isocurvature modes, and the spontaneous symmetry breaking scale, which we are not going to discuss in
this review.

49 For other versions of this figure and a notebook to generate it check https://github.com/elisaferreira/figure_mass_FDM.

https://github.com/elisaferreira/figure_mass_FDM
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Fig. 19 Figure from Hlozek et al. (2015) that shows the 2σ and 3σ of the mass fraction Ωultra−light/Ωd in function of mass. The
regions show the constrained region Ωultra−light/Ωd . 0.05 at 95%, where Ωd is the total dark-matter density fraction. CMB-only
constraints are the red regions, while grey regions include large-scale structure data.

In these references, the data from CMB and from LSS were combined in order to obtain the constraints.
The combination of this data is important to make the constraints on the higher mass end of the FDM tighter,
and it is driven mainly by the LSS tight constraints for k ∼ 0.1hMpc−1.

For the low mass end of the FDM, the combination makes the constraints weaker. This results show that, if
one wants a DM component that can be responsible for all the DM in the universe, then

m & 10−24 eV . (243)

If m . 10−32eV the ultra-light field can behave as dark energy. This constraints are driven mostly by the
expansion of the universe given that a component with this mass modifies the evolution of the universe after
matter-radiation equality and can be strongly constrained by CMB (we will discuss FDM as DE in more details
in the end of this section). The most up to date constraints are present in reference (Hlozek et al. 2018), but
we show in Figure 19 a very explanatory plot from Hlozek et al. (2015) where we can see these constrains. The
allowed region is the red shaded region.

The region where 10−32 eV < m < 10−23 eV is interesting since is allows to constrain the model a lot. This
might not be the region where the ultra-light field can have a sizable DM component, but it allows to put percent
level constraints the fraction of the FDM, with CMB being the best gravitational probe in this regime. In this
region FDM cannot be more than 5% of the total DM: ΩFDM/(ΩDM + ΩFDM) ≤ 0.05 and ΩFDMh

2 ≤ 0.006
with 95% confidence level.

Future CMB experiments, CMB S4, will be much more sensitive to the energy density of the ultra-light
particles (Hložek et al. 2017). They will be capable of probe different imprints that ultra-light particles can
leave in the CMB in the range of masses 10−32 eV < m < 10−23 eV. This range is particularly interesting to
probe many different aspects of the microphysics of the models that belong to the FDM class, like the axion
and ALPs. In the higher mass range of the above interval, this next generation of CMB experiments can provide
constraints in the mass that are competitive to small scale observables like dwarf galaxies abundances and
mass-halo profiles.

Optical depth: The suppression of the structure formation present in the FDM model leads to a possible
smaller amount of galaxies at high-z, changing the reionization history. We saw that the optical depth can be
changed by the FDM (164). We can then use the optical depth measured by the CMB, τ(rrec), to constrain
the mass of the FDM. This was done in (Bozek et al. 2015) where they use the value of the optical depth from
Planck + WMAP (Spergel et al. 2015). They found that a mass m . 10−23 ]eV for all the DM to be FDM is
excluded, depending on the model chosen which entails details of the reionization and the luminosity function,
at more then 3σ. The standard mass of 10−22 eV is challenged by these high-z measurements, with results from
this mass being on the edge of the allowed parameter space. This shows that non-linear high-z measurements
can also be used to constrain the FDM mass, and other ULDM models. However, these bounds carry a lot of
astrophysical uncertainties and so need to be considered carefully.

This study opens up an interesting avenue to constrain the FDM model through the modified reionization
using CMB. The epoch of reionization can be better constrained by measuring the kinematic Sunyaev–Zel’dovich
(kSZ) effect (Sunyaev and Zeldovich 1980). The amplitude of the kSZ is sensitive to the duration of the reion-
ization, and could be used to put bounds in the FDM mass. Experiments like Advanced ACTPol (AdvACT)
have an improved measurement of the kSZ and help constrain the FDM.
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5.1.2 Lyman-α

FDM

Recent investigation of FDM models in light of Lyman-α forest finds new constraints on FDM mass (Iršič
et al. 2017; Armengaud et al. 2017; Kobayashi et al. 2017). It puts a bound in the mass of FDM in the case
where more than 30% of the DM being composed by this scalar field of m & 10−21 eV. This value is larger than
the value necessary for the FDM model to solve the small scale problems of ΛCDM, and puts some tension in
the FDM model.

The Lyman-α forest is produced by the absorption of the light from quasar by clouds of neutral hydrogen
localized at low-redshifts, in the line of sight between the quasars and us. For this reason, this is an important
probe of the matter spectrum on small scales, on scales of order 0.5 Mpc/h . λ . 100 Mpc/h.

In this work, data from the XQ-100 survey was used which refers to 100 medium resolution spectra with
emission redshift 3.5 < z < 4.5. This data is compared against a simulation of the FDM with different masses
and abundance today. On non-linear scales, quantum pressure is added. The result is shown in the left panel of
Fig. 20. The right panel of this figure we also see the impact of the constraints obtained in cosmology and in
the astrophysical implications. In cosmology, the constraints obtained give a bound in the value of the displaced
field, assuming that the genesis mechanism for this light field is vacuum displacement. Combining this data
with CMB data, they also derive bounds on inflation, more specifically on r the tensor to scalar ratio for an
inflationary epoch in the presence of FDM. They also show how this bound impacts the resolution of the small
scale problems presented by FDM. The cyan line indicates the bound where the missing satellites problem is
solved by FDM. The constraint is very tight and it shows a tension with the Lyman-α measurements.

A possible caveat from this analysis, and of the other in Iršič et al. (2017); Armengaud et al. (2017), is that
they use hydrodynamical simulations, and they mostly neglect quantum pressure. However, quantum pressure
can be very important and play a vital role in structure formation, which is what the analytical behaviour seems
to show us (Zhang et al. 2018a). In a follow up paper (Nori et al. 2019), quantum pressure was included in
the simulations and its effect on the LSS evolution is studied. It is found a constraint in the mass of the FDM
model of m ∼ 2.1 × 10−21 eV, which is compatible with the ones obtained in the analyses that do not include
quantum pressure (Iršič et al. 2017; Armengaud et al. 2017; Kobayashi et al. 2017). It is found that quantum
pressure does not affect the LSS in these redshifts and scales relevant for Lyman-α, not affecting the bound on
the mass largely. These simulations also allow the authors to study the properties of the halos formed in this
model, showing the differences in their distribution and shape in comparison to CDM.

Recently in (Rogers and Peiris 2020), a reanalysis of the Lyman-α data is presented. This is based on a
method that emulates the power spectrum from a ”training” simulation constructed using Bayesian optimization,
which then is fed in the MCMC sampling of the parameter space. The authors claim that this emulator makes less
assumptions than the usual interpolation techniques and for this reason presents a better statistical modelling of
the power spectra. With this technique they obtain a even higher bound for the FDM particle: m > 2×10−20 eV,
which disfavours the strongly 10−22 eV canonical FDM mass. This reference presents the newest and most
complete study of the bound on the FDM model using Lyman-α, and it confirms the tension with the value of
the mass that is necessary in order for the FDM model to address the small scale challenges.

However, as it is pointed out in these references, the bounds obtained above depend on how the intergalactic
medium is modelled. Differences in this modelling could drastically change these bounds. Therefore, new and
independent analysis need to be done in order to confirm if the intermediary to small scales hold more information
about these models. Another probe that can help with that is the 21-cm from neutral hydrogen, since it probes
even smaller scales. Another thing that could change these bounds is the properties of the FDM model. In (Leong
et al. 2019) it was pointed out that for FDM models with a axion-like cosine potential, different initial conditions
can yield different bounds on the FDM mass when using the Lyman-α data. Different than in the standard case
considered until now where we considered small angles (field values - see discussion bellow (93), in the extreme
axion misaligned angle is considered, the transfer function presents a bump for small scales. This affects the
Lyman-α flux power spectrum. With this initial conditions, the mass of this FDM scenario necessary to explain
the Ly-α data is of order 10−22 eV, > 10 times bigger than for the case of standard FDM initial conditions
considered above (see (Arvanitaki et al. 2020) for other phenomenology of this extreme FDM model). This
shows that the bounds also depend on the properties of the FDM model.

5.1.3 21-cm cosmology

FDM

As discussed above, the ULDM models give a suppression of the matter power spectrum on small scales.
Those scales can only be marginally probed by the cosmological probes like CMB, LSS, cluster abundance,
Ly-α forest. Those measurements can only constraint the structures on scales k ≤ 10 Mpc−1, not being able to
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Fig. 20 Left panel: Shows the constraint on the mass of the FDM and the fraction of the total DM mass from Ly-α forest
measurements. Right panel: Constraints in the mass of the FDM and the value of the displaced field. This is combined with
cosmological constraints, shown by the dashed lines for different tensor to scalar ratios. The region in parameter space where the
missing satellite problem is solved for the FDM model, is shown by the cyan stripe. The white dotted contour represents the line
where FDM constitutes only 20% of the total DM. Image reproduced with permission from Kobayashi et al. (2017), copyright by
xxx.

probe the smaller scales. One new window of observation, the 21-cm line from neutral hydrogen (HI), promises
to allow us to probe the matter power spectrum in much smaller scales, k ≥ 10 Mpc−1, on scales even smaller
than the Ly-α forest. This is possible since neutral hydrogen is only present in the universe, after reionization,
inside dense clouds in damped Ly-α systems, which are small objects (k ∼ 102 Mpc−1). In this way the 21-cm
HI signal is a biased tracer of the galaxies, and consequently of the underlying matter distribution in such small
scales. Therefore, measuring the global 21-cm HI signal together with its fluctuations can gives information
about the still largely unconstrained small scale matter power spectrum.

However, at those scales these system are dominated by astrophysical process, making it difficult to disentan-
gle the behaviour of DM from those processes. To obtain cosmological information from these measurements is
a challenge. Some recent studies (Muñoz et al. 2020) forecast that the matter power spectrum can be measured
from the global 21-cm HI signal for an experiment with parameters close to EDGES (Bowman et al. 2018), with
a precision of O(10%) integrated over the scales k = (40−80) Mpc−1, after imposing priors on the astrophysical
effects like star formation rate and feedback amplitude. They also parametrize the effect of foregrounds, like the
Galactic foreground, that plagues all 21-cm experiments and might represent a huge limitations for them if not
well mitigated. Detecting the 21-cm HI fluctuations is a much harder task. Large interferometer experiments
like HERA (Hydrogen Epoch of Reionization Array) (DeBoer et al. 2017), LOFAR (LOw-Frequency ARray)
(van Haarlem et al. 2013), LWA (Long Wavelength Array) (Eastwood et al. 2019), and SKA (Square-Kilometer
Array) (Koopmans et al. 2015) have the goal of measuring this signal from the epoch of reionization (EoR)
and also late times. For a HERA-like experiment it was found that the matter power spectrum can be probed
with an accuracy of O(10%) integrated over the scales k = (40 − 60) Mpc−1 and k = (60 − 80) Mpc−1. The
measurements of the fluctuations probe the evolution of the matter density tomographically, carrying more
information about the scale and redshift dependency of the HI signal, bringing more information on the astro-
physical processes. This makes the parameters of these astrophysical processes to be better disentangled from
the HI signal, allowing this constraint in the power spectrum be less dependent on the astrophysics in these
regions.

Specifically for the case of ULDM models, forecasts using 21-cm HI signal were made in Lidz and Hui (2018);
Nebrin et al. (2019); Shimabukuro et al. (2020), and they specialize in the FDM model. Reference Lidz and
Hui (2018) studies how the recent EDGES measurement of the global 21-cm HI signal (Bowman et al. 2018)
can constraint the FDM model. The global signal is the average radio signal from 21-cm redshifted emission
from z ∼ 15−20 in the case of EDGES. This measurement showed an absorption profile that had an amplitude
two times bigger than the expected. This higher amplitude indicates that already at redshift z = 20, there
was significant star formation, which leads to a also significant Lyα background. This fact shows that the
smallest structures, and consequently the power spectrum on small scales, cannot be largely suppressed. This
puts constraints in models of DM that have the feature of suppressing the small scale structures, like the FDM
(or any ULDM model). This measurement alone is capable of putting a challenging constraint in the mass of the
FDM particle: m ≥ 5×10−21. A similar analysis is performed in (Schneider 2018), where using conservative limits
of the stellar to baryon fraction and minimum cooling temperature motivated by hydrodynamical simulation
puts a comparable bound in the FDM particle mass: m ≥ 8×10−21. To obtain this constraint some assumptions
on the star formation, and on the halo mass profile had to be made. Given the importance of this result for the
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FDM models, the bounds obtained from this data should be explored further, as well as the future data from
21-cm signal.

To better understand how the HI signal is affected by the FDM model, in Nebrin et al. (2019) they study of
the impact of FDM models in the 21-cm HI signal from the cosmic down and EoR analytically, together with
some forecasts for future experiments. They use an analytic model which take into account the Ly-α coupling,
X-ray heating and ionization to study the 21-cm in a ΛFDM cosmology. They find that suppression of structure
from FDM models, which makes small sub-halos absent in this model, has the effect of postponing the formation
of sources and the reionization of neutral hydrogen. This delay changes the global 21-cm signal showing a smaller
absorption feature than expected from ΛCDM. The amount of suppression allowed considering the results from
the EDGES experiment puts a lower bound on the mass of the FDM model, with m ≥ 6 × 10−22 eV, which
might already be considered challenging for the FDM to solve the small-scale problems, but marginally. They
also show the potential of a SKA-like and LOFAR experiments to test these models in the future. This shows
us that future experiments will be able to confirm the important bound of the FDM model imposed by the
EDGES.

In Shimabukuro et al. (2020), they analyze the impact of measurements of the 21-cm forest, which alter-
natively from the tomographic and power spectrum techniques to use 21-cm HI signal, proposes to use the
21-cm narrow absorption features from the intergalactic medium cause by high-z loud radio sources or collapsed
objects, like minihalos. The 21-cm forest is expected to be measured by SKA. In this reference they show that
the impact of this measurement can also constraint the mass of the FDM model, and that this is degenerate
with the fraction of FDM that composes the DM.

For post-reonization HI signal from 0 < z < 3, that can be measured using the intensity mapping technique,
a study of the forecast of the possible constraints in the FDM model was presented in (Bauer et al. 2020). This
analysis shows how this signal can be used as a powerful probe of the halo formation, since the halo abundance
is changed if a fraction of the DM is given by the FDM. They forecast the constraints in the mass of the FDM
for a SKA1MID-like IM experiment. They find that the fiducial value adopted for the FDM (m = 10−22 eV) can
be constrained at the 10% level when the 21-cm data is combined with CMB data from the Simons Observatory.

The possibility of 21-cm HI signal to constrain alternative models to CDM, like WDM for example, was
studied in many references (Barkana et al. 2001; Yoshida et al. 2003; Safarzadeh et al. 2018; Lopez-Honorez
et al. 2019; Leo et al. 2020). They show how the signal changes for different DM models and also show how
measurements like the one from EDGES can put constraints in the mass of WDM.

The study of the capabilities of 21-cm experiments to give us cosmological information is an active field of
study and the references above are just some examples of those efforts. These studies give us hope that, in the
near future, this new window of observation will allow us to probe the still unconstrained small scales, helping
elucidate the nature of the DM component.

5.2 Astrophysical constraints and new windows of observation

We presented above some cosmological observations that help to constraint the ULDM models. In the past few
years, there has been a huge advance in the observations of the small scales, with new windows of observations
being opened that can help determine the nature of DM. We present in this section the constraints on the ULDM
parameters coming from astrophysical observations and present some of these new windows of observations that
are still being tested and being developed, but that promise to help testing the ULDM models.

5.2.1 Local Milky Way observables and stellar streams

Our galaxy, the Milky Way (MW), is our closest source of information about DM and it is a very good laboratory
for studying its behaviour on small scales. Here we present some observations from the MW that promise to help
us test different models of DM. We are in a very special era for observations of the MW and Local group with
data coming from many current and future experiments like Gaia (Collaboration 2016), Large Synoptic Survey
Telescope (LSST) (Ivezić 2019), Prime Focus Spectrograph (PFS) (Tamura et al. 2016), WFIRST (Akeson
2019), among others. Using the incredible new data from these observations promises to be revolutionary in the
studies of the MW, and hopefully for helping discover the nature of DM.

MW’s gravitational potential: Very quickly we would like to point out an observable that can help us test DM.
Knowing the shape, mass and distribution of the halo in the MW can gives us clues on the DM model since
different DM models predict distinct shapes for the halos. To understand the halo we need information not
only in the inner regions of the halo, but on many different scales up to the virial radius. The measurement of
the position and velocity of satellite galaxies and globular cluster can give information for the dynamics in a
good range of distance from the center of the MW. The distribution of satellite galaxies is already used to put
constraints on the mass of the ULDM models (and other models of DM), as we saw above.
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Experiments like Gaia, can give us very accurate data for scales much smaller than the virial radius. PFS
galaxy archaeology survey will also measure stars in the galactic disk, complementing complementing Gaia’s
survey. LSST is expected to provide information from stellar tracers on scales close to Rvir, being able to measure
many new satellites that are fainter and more distant than the known today, extending the determined halo
mass function by three orders of magnitude.

This is linked to the study of streams discussed above, since streams given their long range in the halo, can
give us information on the gravitational potential of the halo for of even larger scales.

Dwarf spheroidals

Dwarf spheroidals (dSphs) are good laboratories to study ULDM models. Those small galaxies are DM
dominated and allow us to study the behaviour of DM in an environment with small influence from baryonic
effects. They can be used to probe the three classes of effects we saw in Section 4.1.1: the suppression of the
power spectrum, effects coming from the core structure inside the galaxy, and dynamical effects.

The suppression of the power spectrum present in the FDM model, leads to a suppression in the low-mass
halos. So the FDM model predicts halos with a minimum mass. In (Nadler et al. 2019), they used the minimum
mass of detected halos from the observed population of satellites in the MW, and found that in order for it to
be within the bound (182), the mass of the FDM needs to be m > 2.9× 10−21 eV, setting a lower bound from
on the mass caused by the linear suppression.

The effects from the presence of the core in the interior of galaxies can also be probed by dSphs. As discussed
in Section 4.1.4, classes of models like the FDM present a limit for the size of the cores that they can form which
leads to an upper bound in the central density of these cores. We can use measurement the central density and
half mass radius of dwarf galaxies to compare with those bounds and constrain the mass of the FDM.

As we already discussed, in (McConnachie 2012), half-light radii inferred from the densities of 36 Local group
dwarf spheroidals was measured and when compared with the bound on the half mass radius predicted for the
FDM (180), obtained a mass around m ∼ 10−22eV so these are compatible. The density of 8 dwarf spheroidals
has been measured in (Chen et al. 2017). Comparing these central densities measured with the bound (181)
it was shown that for the central density from FDM to match the measured ones from the dSphs Draco and
Sextants, the mass of the FDM needs to be m = 8+5

−3×10−23 eV for Draco and m = 6+7
−2×10−22 eV for Sextans.

For those masses, the FDM leads to a cored distribution at the center of the galaxies, alleviating the cusp-core
problem. This shows that dSphs can be used to put bounds on the mass of FDM.

Nevertheless, new studies have been reviewing these bound. They challenge many aspects of this result
including the analysis made presenting some reanalysis, and the assumption of sphericity of the halo of these
galaxies.

It is suggested in (González-Morales et al. 2017) this analysis might be giving biased values for the FDM
mass. The reason for that is because there is a degeneracy between the mass density profile and the anisotropy
of the velocity dispersion. When using Jeans analysis to obtain the halo parameters, like the FDM mass, from
dSph galaxies that we do not know the density profile, leads to a biased determination if this mass. Therefore, in
this paper they use mock catalogues of dSphs hosted in a FDM halo and they conclude that the analysis should
be fitting the luminosity-averaged velocity dispersion of the subcomponents. Using this technique for Fornax
and Sculptor, they obtain a bound in the mass of the FDM with 97.5% confidence of m < 0.4×10−22 eV, which
goes in a different direction than the other constraints.

Another analysis (Safarzadeh and Spergel 2019) using the half-mass radius and the slope the mass profile of
Fornax and Sculptor dwarf spheroidal galaxies, arrives in a different bound for the FDM mass m & 10−21 eV,
in order to have the expected density profile and halo mass for those dSphs from observations like dynamical
friction.

It was pointed out in (Kendall and Easther 2020) yet another possible limitations of the above analysis. The
authors of this study show that the presence of cores with flat density profile in the center of the NFW-halos
can actually make the density of large ULDM halos larger than the CDM ones, making the cusp-core problem
worse. This happens because solitons obey the inverse mass-radius scaling law, with mass depending on the
total mass of the halo. They perform an analysis that takes into account semi-analytically the variability of
the core-halo relation showing that this might make this discrepancy less strong for larger halos. However, this
shows that many aspects that are crucial for properly describing these systems, like fluctuations and baryonic
effects, are not present in the semi-analytic model.

Another study also challenges this result based on the fact that the DM halo in dSphs might not be spher-
ical (Hayashi and Obata 2020). This analysis produces less stringent bounds due to uncertainties in the non-
sphericity but brings an important characteristic that should be considered about the DM halo of dSphs.

All of these studies show that we need to have better understanding of the modelling of those halos and
their formation, and need broader observations and numerical simulations, specially including baryons, in order
to understand and test the FDM class using dSphs. However, they also show how powerful these small galaxies
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can be to constrain the FDM. Measuring the density profile of dSphs is the goal of many future telescopes like
PFS and LSST, for example.

Another class of dwarf galaxies that can be used to probe ULDM model are the ultra-faint dwarf galaxies.
These ultra-fainit galaxies present an even larger mass to light ratio than the dwarf galaxies. Thus, they are
important for probing small substructures that can be used for testing any DM models that suppress the presence
of substructures below a certain scale (see (Calabrese and Spergel 2016) for an example of such analysis using
ultra-faint dwarfs). Experiments like LSST will also make a more complete search for ultra-faint satellites.

Stellar streams

Stellar streams are a stream of stars orbiting a galaxy which are remnants of a tidally disrupted globular
clusters or dwarf galaxies, that was torn apart by a more massive system. These streams are usually thin and
very long, extending to dozens of kpc across the 3-dimensions of the halo, and wrap around the disrupting
galaxy. Streams are good dynamical probes since they are initially cold and very sensitive to the gravitational
potential (Ibata et al. 2002; Johnston et al. 2002; Yoon et al. 2011; Carlberg 2012). This means that the streams
when encounter substrutures present in the halo of the galaxies can be influenced by it, causing dynamical
heating, which are changes in the velocities in the stream, but that are very hard to detect. These encounters
also cause disturbances in the morphology of the stream, with the formation of gaps which are underdensities
caused by the sub-halos encountered (Carlberg 2012). Only a part of the sub-halos hosts baryonic matter and
can be observed directly, so stellar streams offer the opportunity to detect dark halos invisible by the traditional
methods (see also discussion about lensing below). These gaps contain information about the substructure and
can be caused by clumps that are even less massive than a what is expected of a DM sub-halo, showing how
sensitive the streams are for detecting substrucutres. From these gaps, it is possible to infer the properties of the
perturber that caused the gap, determining quantities like its mass, scale radius, relative velocity, and impact
parameter. It is estimated that we can observe gaps in streams cause by substructures with mas as low as (Erkal
and Belokurov 2015; Erkal et al. 2016; Bovy et al. 2017) M ∼ 10−5 − 10−6M�. This is well bellow the limit
where those halos are expected to host galaxies, and for this reason cannot be probed by usual methods based
on detecting the luminous component. On top of that, since the stream extend for large distances in the galaxy
and outside the galactic plane, streams might contain detailed information about the gravitational potential
and its variations of large part of the halo of a galaxy. With this, stellar streams are an exciting new probe of
substructures that can have important consequences in testing different models of DM.

Since different models of DM predict a different amount of sub-halos, it is argued that the stellar streams
can be used to test DM models. In the case of the ULDM models, which suppress the formation if substructures,
having a much bigger size of minimal subhalo allowed to be created in the galaxy halo. Models like WDM and
SIDM also have a modified abundance of sub-halos in comparison with CDM. So there is the hope that these
different models would imprint very distinct signals in the streams given their different substructure distribution
Streams can also have gaps coming from baryonic substructures, so one needs to be very careful in the analyses
not to overestimate the presence of sub-halos.

Up to now, 22 MW stellar streams are known, being the Sagitarius stream one the most important.50 One
of the streams that has been used to determine the presence of sub-halos is GD-1. The MW stellar stream GD-1
was discovered using SDSS maps (Grillmair and Dionatos 2006), originated from a globular cluster, and it is
seen as a 63◦ long structure in the North Galactic region. Gaps of scales of approximately 10◦ were found in
this stream using SDSS and these were associated with the encounter with sub-halos by Carlberg (2016). This
was confirmed by Banik et al. (2019) analyzing the stellar density perturbations from accurate measurements
of the morphology (de Boer et al. 2020) of this streams using Gaia data combined with photometry from Pan-
STARRS (Chambers et al. 2016). They found that the data indicates that these perturbations should come from
sub-halos, and that their abundance and masses are compatible with the expected from CDM from simulations.
The error bars of these abundances and expected masses are still large. In order to detect gaps from subhalos
from masses M ∼ 10−5 − 10−7M� it is necessary a precision in the determination of the radial velocity of
100 − 300m/s. However, these measurements inaugurate and opened the avenue for searches of substructures
using stellar streams.

Novel experiments like PFS and LSST promise to measure the streams from the MW and Andromeda in
more detail and with higher precision, with the goal of not only detecting the signals of substructures but to
understand in more detail the characteristics of the stream, its formation and the properties of its progenitor.
Forecasts for LSST (Drlica-Wagner et al. 2019) show that the lowest mass subhalo that the 10-year LSST data
will be able to measure has mass 2 × 107M� for a stellar stream with surface brightness of 33mag arcsec−2,
improving the current bound in three times. LSS can also measure smaller subhalos (10−5 M�) since it will
allow to access to smaller angular scales, previously dominated by noise, in order to measure the power spectra
of the stream.

50 Around 4 streams are known in Andromeda and 10 streams are known outside the Local group.
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However, a recent publication (Ibata et al. 2020), revises these conclusions and indicate that the features
found in GD-1 can be explained by simple epicyclic motion in a smooth Galactic potential as shown by their N-
body simulation, without the need of the presence of a subhalo. Therefore, they conclude that the measurement
from GD-1 show no evidence for the influence of DM. This shows that obtaining information about DM sub-
structure in the streams might be more complicated than expected, with some degeneracies with other effects,
and that more modelling and understanding of the influences of the MW in the streams are necessary. This
is an open topic of research, and all these conclusions need to be studied further and verified by independent
groups. But without a doubt, streams are a promising probe for DM, and the next few years are guaranteed to
be very exciting in this fast moving field.

Vertical dynamics

Here we are going to show that the vertical dynamics of stars can be used to test predictions coming from
different aspects of the ULDM. We are going to show here that it can be use to probe modifications of the
dynamics coming from the MOND behaviour of the theory, in the case of the DM superfluid, or as a way to
probe the heating of stars cause by the presence of FDM quasiparticles in the halo. The second effect would
also be present in the case of the SIFDM or the DM superfluid since both classes would also present a similar
relaxation with macroscopic objects, which can be probed by this effect. But this was only studied in the case
of the FDM in the literature, and that is what we present here.

Superfluid DM

Our galaxy holds more information that can be used to probe DM models. There are several other local
MW observables that imprint information from the underlying DM that forms the halo.

One example of one observation that can bring information about the different dynamics imprinted by models
like MOND and the DM superfluid is presented in Lisanti et al. (2019a,b). MOND and the DM superfluid model
are constructed to give a very good fit to the rotation curves of galaxies and to explain the scaling relations, like
the MDAR, by having a different dynamics on small scales. On top of that, the DM superfluid model reproduces
the expected CDM behaviour on large scales. However, in these papers the success of those models in explaining
the dynamics of galaxies is challenged by observations from the MW dynamics.

The radial dynamics is what it is constrained by those models, since it is the information that enters in
the rotation curves of galaxies and the scaling relations. Now, if one consider also the vertical velocities in
the vicinity of the Sun, the authors show that then it remains a challenge for those models to explain the
rotation curves and these vertical velocity dispersion data. MOND and the DM superfluid, in slightly different
ways, modify the dynamics on small scales, where for low-acceleration regions, a different acceleration than the
Newtonian emerges in the system. In the DM superfluid this is caused by the presence of the phonons, as we saw
above. This modified acceleration changes the dynamics in the radial and in the vertical directions. And in these
articles they constraint both the radial and the vertical velocities dispersion for these models in comparison to
CDM.

To constraint the radial dynamics, the very precise data from Gaia was used giving data of the circular
velocity between R = [5, 18] kpc. For the vertical dynamics it was used data of K-dwarfs from the SEGUE
sub-survey from SDSS (Sloan Digital Sky Survey) were it was inferred the velocity dispersions for three mono-
abundance stellar populations. With this data a Bayesian likelihood analysis was conducted. The authors found
a discrepancy between the vertical acceleration predicted by MOND and DM superfluid model in comparison to
the one inferred from the data, giving values that are around 15% larger than the ones inferred from observations
and larger than the ones predicted by CDM. And for this reason they claim those models are not preferred as
the DM model.

This work establishes an important new observable that should now be taken into account when constructing
DM models, their impact not only in the radial dynamics, but also in the vertical dynamics.

However, as some authors have pointed out this result should be taken carefully. In McGaugh (2020) it is
pointed out that this is a 2σ discrepancy and that maybe the data used to infer the vertical velocities implies a
local DM density that is the double of the one inferred from the radial dynamics. This would give a halo that
is not spherical, like assumed in the analyses of Lisanti et al. (2019a).

This brings an important point about the data for the vertical dynamics of the MW that we would like to
highlight. The dynamics of the MW is very complex with a rich accretion history. Although the MW, with its
thin disk, is considered a very stable galaxy with no major recent dynamical interactions, many observations
indicate a major accretion event with Sagittarius (Sgr) dwarf spheroidal. This is seen in the streams that wraps
around the MW, and it is expected that this event strongly influenced the dynamics of the MW. In Laporte
et al. (2018) they show a study of the MW’s major accretion events with Sgr and the Large Magellanic Clouds
(LMC). They show that this encounter with Sagitarius produces oscillations in the MW disk. These vertical
perturbations are an influence of many passages of Sgr, as it falls into the MW. The influence of the LMC also
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changes the dynamics, but much less than Sgr, with Sgr being the main influence in the dynamics of our galaxy
in its recent evolution. This shows that the dynamics of the MW is complex and has many unknowns. These
vertical oscillations are also found in recent observations both in the Galactic disk and around it, close and far
away the solar neighbourhood (see Laporte et al. 2018 for a summary and discussion of those). Therefore, even
if the explanation for these oscillations and other features in the Galactic disk is not solely the one above, this
rich dynamics of the MW has to be considered when using these observations, specially to constrain models.

In this way there is the possibility that the vertical dynamics data used in Lisanti et al. (2019a,b) has
the influence of these oscillations and cannot be used at face value in order to constraint the dynamics of
DM. Or, maybe this complexity of features has to be considered as larger error bars in the inferred vertical
dispersion. Therefore, vertical velocities are a new and important observable to test DM models, but it necessary
to understand if this information can be disentangled from the complex dynamics from the accretion history of
the MW. When this degeneracy is resolved this will be an important criteria for DM models to satisfy in the
MW.

In Hossenfelder and Mistele (2020) the authors also point out that the model of the DM superfluid used is too
simplistic and that the DM superfluid interacts with baryons which might also change the vertical accelerations.

FDM

In the context of the FDM model, the vertical dynamics was also used to constrain the FDM mass in (Church
et al. 2019), where the change in the vertical dynamics comes from a different effect than the one above. The
disk of spiral galaxies is modelled approximately by a decaying exponential for the radial and vertical structure.
From observations we see that, in general, we have galaxies that have a thin disk or a thick disk (Binney and
Tremaine 2008). What determines the thickness of the disk is the vertical velocity dispersion of the stars in
the disk, and its linked to how old the star population is in the disk. As we saw in Section 4.1.4, the presence
of order one fluctuations in the FDM field, or substructures in the halo, can cause gravitational heating due
relaxation between the FDM particles and the stars (Bar-Or et al. 2019). This heating increases the the velocity
dispersion of the stars, making the size of the system that contains these stars larger: star clusters larger or
making the disk in galaxies thicker. In this work they investigate how substructures of the FDM model affect
the disk shape. They use simulations that solve the SP system to understand the structure in the FDM model.
They find that the subhalos formed in this model, plus the presence of a standing wave in the density profile
of FDM, heat the stars in the disk, making the the MW disc thicker, with the second effect affecting more the
inner disk. They also find the presence of radius dependent flaring of stars caused by these structures. They
compare this with measurements of the velocity dispersion of the MW in its thickest part (δv ∼ 32 km/s), and
put a bound in the mass of FDM at 2σ confidence level of m > 0.6× 10−22 eV.

Dynamical effect: Eridanus II

In the previous section we showed how the measurements of the thickness of the disk can probe the velocity
dispersion caused by gravitational heating by substructure in the halo in the case DM is the FDM. Here we are
going to show that Eridanus II can be used to probe the same effect of the gravitational heating.

The existence of old star cluster like Eridanus II can then be used to constrain these FDM fluctuations, and
consequently the mass of the FDM particle. But not only the existence of such sub-halo to host Eridanus II is
necessary, but also one needs to check the stability of the star cluster contained in this UFD. It is observed in
simulations that the central core formed in the inner part of galaxies has oscillations that changes the density
inside the core and might affect star formation. Therefore, if the star cluster region is inside the core, which
occurs for m . 10−20 eV, it is going to be affected by the oscillations and might have a different star formation.
Otherwise, the star cluster can extend outside the core and can be subject to the interference patterns present
in the halo. The effect of those oscillations in the stars is heating of the star cluster, which can disrupt the
cluster in a time scale that should have been observed. Taking that effect into consideration, if FDM is the total
amount of DM, Eridanus II can only form if m & 8×10−22 eV, which is a value of the mass of the FDM particle
that is in slight tension with the one necessary for the FDM model. In Schive et al. (2019) high resolution
simulations, where the random walk behaviour of DM inside the core could be seen, it is shown that Eridanus
II is bound to the MW, so its halo might suffer tidal disruption. This reduces the oscillations and counteracts
the heating. From that, they claim that the bound obtained in Marsh and Niemeyer (2019), can be evaded and
m ∼ 10−22 eV is allowed and can explain Eridanus II. These studies show how important is to study the effect
of oscillations in the core, and this is the goal of future simulations.

5.2.2 Substructure - strong lensing

Different models of DM predict different substructures, from its abundance to the minimum mass for the possible
substructures formed. As we saw in this section, generally all the ULDM models suppress the formation of sub-
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halos of a certain mass and size. By probing the substructures and its properties, then, we can test different
models of DM. Therefore, the observables that probe substructures represent one of the most important tests
for DM on small scales.

We already presented above a probe of substructures present in the halo, the stellar streams. This probe
seems to be very sensitive to DM substructures and has the potential in the future to help test DM models.

However, there is another way of probing directly the presence of substructures, if they are luminous or
not, which is gravitational lensing. Gravitational lensing is distortion of light from objects by the presence of
a gravitational potential. One of the main observations used to search for substructures is strong gravitational
lensing of quasar. Lensed quasar can present multiple images, arcs or even Einstein rings. The presence of
substructures modifies the lensed images of quasar changing its morphology and flux ratios, in a way that the
substructure can be mapped, as done in Mao and Schneider (1998); Hsueh et al. (2017); Dalal and Kochanek
(2002); Hezaveh et al. (2016), including distortions from sub-halos in the line of sight (Despali et al. 2018).
There are many efforts to probe DM substructures from strong lensing using different frameworks (Vegetti and
Koopmans 2009a; Koopmans 2005; Vegetti and Koopmans 2009b; Daylan et al. 2018; Vegetti et al. 2010), and
machine learning techniques (Alexander et al. 2020; Brehmer et al. 2019) (for a list of other machine learning
approach see Alexander et al. 2020).

Different models of DM can also predict different types of substructures, like vortices. They can also pre-
dict different shapes for these substructures like dark disks. Dark disks are a unique type of substructure in
isolated systems, not expected in CDM. Those dark disks can be formed in the models based on the superfluid
DM (Alexander et al. 2019) and are very distinct signature of those alternative models. Strong gravitational
lensing is an important technique to probe these substructures, and one of the techniques that is going to
improve the most with the upcoming experiments.

All the other observations presented before probe substructures or other phenomena from systems that
contain stars or galaxies. Gravitational lensing and stellar stream can be used even if the sub-halo or dark
structure does not have a luminous component. Therefore, these probes offer the possibility of not only probing
very light substructures but different dark structures predicted by the ULDM models.

Sub-halo mass function

As we described in Section 4.1.4, the sub-halo mass function for the FDM model presents a redshift dependent
cut for smaller sub-halo masses, which leads to a suppression of the small scale structure. We can then use probes
that are sensitive to the gravitational potential to test the SHMF of the FDM model.

One work that attempts to test the suppression of the sub-halos is Schutz (2020). In this work strong lensing,
together with stellar streams, are used to constraint the suppressed sub-halos mass function of the FDM model.
A bound on the mass of the FDM particle can be obtained, m ∼ 2.1 × 10−21 eV, which is again in tension
with the value of the mass where the FDM solves the small scale challenges. A similar analysis was performed
in (Benito et al. 2020) using a different fitting form for the sub-halo mass function from (Schive et al. 2016) and
comparable constrain for the FDM mass was obtained m ∼ 5.2× 10−21 eV

5.3 UV luminosity function

Here we present constraints on the FDM mass by comparing the predicted cutoff in the luminosity function
from the FDM model with observations that probe the UV luminosity function.

The Hubble Ultra Deep Field (HUDF) (Bouwens et al. 2015) is used to search for galaxies at high-z. The high-
z galaxies measured by the HUDF can be used to match with the expected UV luminosity function predicted
by the FDM. This is done in many studies. In (Schive et al. 2016), using the HMF fitted from their simulation
(161), they used the data from HUDF and found that m & 1.2× 10−22 eV (2σ), using galaxies from z = 6− 8.
A very similar analysis was made in (Corasaniti et al. 2017) with similar bounds. In (Bozek et al. 2015) this
was also analyzed but using the HMF (162) and shows that using the observed UV luminosity from HUDF,
a mass of m = 10−23 eV is excluded with at > 8σ, and therefore m & 10−22 eV is consistent with HUDF.
Obtaining a luminosity function from a full hydrodynamical cosmological simulations of galaxy formation using
the initial conditions from the FDM model was done in (Ni et al. 2019), they reach a similar conclusion, ruling
out m < 5 × 10−22 eV (3σ). Combining the HUDF data with deep IRAC data from Spitzer Space Telescope
over the Great Observatories Origins Deep Survey (GOODS) fields, in (son ????) they can probe even higher
redshifts z ∼ 8 and show that for m ∼ 10− 5× 10−22 eV the FDM is consistent with their measurements, while
m < 2× 10−22 eV is inconsistent.

One can also use the Hubble Frontier Field (HFF) (Lotz et al. 2017; Koekemoer et al. 2014) that observes the
gravitationally lensed ultra-faint galaxies. This observation probes the faint end of the luminosity function. This
is exactly where it is expected that the FDM changes the luminosity function, so it is a very good observation
to put bounds in the FDM mass. This was done in (Menci et al. 2017). Since the measurements that they
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use are based on gravitational lensing and therefore it is possible to measure smaller halos, they construct a
new luminosity function extending to smaller values of M in Φ(< MUV , z) = n(> M, z). This new luminosity
function does not depend on baryonic physics that takes place at galaxy formation. With that they are able to
place a very strong constraint in the mass of the FDM, which must be m & 8× 10−22 eV to be compatible with
this data. A similar study (Leung et al. 2018) using HFF finds that m ' 10−22 eV.

5.4 Black hole superradiance

Until now we explored ways of probing DM by the gravitational effect they imprint in the structure and
substructure of our universe. We explored in detail the astrophysical tests of DM which happen in environments
where we are in the weak field regime, but that are dominated by baryonic effects and complex non-linear
physics, but that can still give us hints of the nature of DM. We present here a very different way of probing
specifically ultra-light fields in strong field environments, far from the linear cosmological scales.

Ultra-light particles can be largely produced around spinning BHs, a process called BH superradiance (Brito
et al. 2015b). When a BH rotates faster than the angular phase velocity of an incoming wave, it amplifies the
energy and angular momentum of the field in its vicinity. This superradiance effect (Zel’dovich 1971, 1972;
Misner 1972; Starobinsky 1973) is a natural mechanism to create clouds of ultralight bosons around Kerr BHs
(see Brito et al. 2015b for a review). For ultra-light particles with Compton wavelengths of order or larger than
the BHs gravitational radius, they will be efficiently produced by the superradiance, forming a large ‘cloud’
around the BH. This cloud is a condensate of ultra-light particles created through this instability carrying up
to 10% of the BH’s mass and angular momentum, diminishing the initial rotation of the BH (Arvanitaki and
Dubovsky 2011; Dolan 2013; Brito et al. 2015a; East and Pretorius 2017).

In the non-relativistic limit, the eigenfunctions of the system are determined by a Schrödinger-like equation
and the whole set up is sometimes referred to as a ‘gravitational atom’. Superradiance instability depends on
the spin of the BH, the mass of the BH and the mass of the ultra-light particle created, where the modes are co-
rotating with the BH. Depending on the mass of the BH, from stellar mass BHs to supermassive BHs spanning
masses from a few to billions of solar masses, the ultra-light bosons produced through this mechanism can have
masses from 10−20 to 10−10 eV (Arvanitaki et al. 2015; Brito et al. 2017; Stott and Marsh 2018). The most
stringent constraints to date on the mass of ultra-light bosons using superradicance is presented in Stott and
Marsh (2018), where, for the FDM model, masses from 7×10−14 eV < m < 2×10−11 eV are excluded with 95%
C.L. using stellar mass BHs, and for SMBHs they are excluded in the range 7×10−20 eV < m < 10−16 eV. These
constraints are also valid in the presence of a potential for the axion like mentioned in Sect. 4.1 if fa & 1014 GeV.
Superradiance can also occur for ultra-light vector fields. In this case particles of mass 10−14 eV to 10−11 eV
can be created by stellar mass BHs, and 10−20 eV to 10−17 eV for supermassive BHs (Baryakhtar et al. 2017).
The case of spin-2 particles was also studied in Brito et al. (2020).

In reference (Davoudiasl and Denton 2019), the data from the Event Horizon Telescope (EHT) on M87∗ is
used to exclude ranges for the mass of scalar ULDM, 2.9 × 10−21 eV < ms < 4.6 × 10−21 eV, and for vector
ULDM, 8.5×10−22 eV < mv < 4.6×10−21 eV. This reference uses the initial EHT data, and it will be interesting
to see how this bound will evolve as more data is obtained.

This cloud emits GW, which allow us to probe its presence around BHs. This GW signal could possibly be
detected by experiments like LIGO, when coming from stellar BH clouds, and LISA, from supermassive BH
clouds (Arvanitaki et al. 2015; Brito et al. 2017; Baryakhtar et al. 2017). The signature of this GW will depend
if the cloud is made of real particles, which creates a non-axisymmetric cloud, or complex scalar particles, where
the cloud is axisymmetric and the emission of GWs is suppressed. For the cloud made of real bosons given the
non-axisymmetric configuration, it can emit GWs when the ultra-light bosons interact with gravitons, or when
gravitons change levels, emitting monochromatic GWs (Brito et al. 2017; Bertone et al. 2019). The cloud can
also collapse if there is an attractive interaction between those UL particles, emitting GWs in this process.

If the spinning BH and its respective cloud is in a binary BH system, the GW signal is modified due to the
presence of the companion presenting a richer GW phenomenology (Baumann et al. 2019; Hannuksela et al.
2019; Baumann et al. 2020). The evolution and GW signature of the cloud is modified by the presence of a
second BH where the waveform and the amplitude of the signal can be modified and even vanish given the
resonant transitions between the growing and decaying modes of the cloud. Sharp features in the GW waveform
appear, offering a window to probe the signal from these UL particles using GW experiments.

This is an active field of research with the modelling of these effects, the study of back reaction and the
observational signatures still ongoing topics of research. Detecting the GWs coming from these clouds would
give us the opportunity to probe ultra-light particles in a range that is very interesting for DM. In this way this
observational signature is very relevant to the ULDM models.
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As we saw here, those busy and complex environments like galaxies and BHs might still offer, despite their
modelling complexity, new ways of probing de fundamental properties of DM. For a review on the same lines
for probing fundamental physics in those environments see Baker et al. (2019).

5.5 Probing the wave nature of ULDM

We have shown above the astrophysical and cosmological consequences of DM being described by a BEC or a
superfluid inside the halos of galaxies. From changing the behaviour of LSS on small scales, to changes related
the halos having a minimum mass in those models, and the different profile the wave nature of ULDM leaves
in the inner parts of halos, we have been investigating the gravitational consequences of the ULDM models.
Some of those predictions might be degenerate with other DM models, like the WDM and SIDM, and even with
possible consequences from unaccounted baryonic physics.

However, given the wave nature of the ULDM, these models present some predictions that are a direct
consequence of this wave nature and that are completely distinct from any other DM model. We discuss here
vortices and interference patterns. These are distinct effects that can appear in galactic scales, and can also be
connected in the formation of halos.

The detection of any of these effects would be a direct evidence of those models of ULDM and a smoking
gun for the wave nature of DM. For this reason it is interesting to study how these effects arise in each of those
classes of ULDM models and understand if they yield observable consequences that allow us to test them.

5.5.1 Vortices

Until now we neglected the fact that the halo might be rotating. As we saw in Sect. 3.5, rotating superfluids have
an interesting new phenomenology, the appearance of a lattice of quantized vortices that allow for the rotation
of this irrotational fluid. This is a purely quantum mechanical phenomena resulting in quantized vortices being
produced.51 This new phenomenology arising from rotating BEC halos might lead to observable astrophysical
consequences that will represent a direct probe of the wave nature of these DM models. The hope is that
measuring this unique signature from these models, will make it possible to distinguish this class of models from
other alternative DM models which might present some signatures that are degenerate with the ULDM models.

Disk galaxies are one of the most common galaxies in our universe and those are rotationally supported
systems. Therefore, the DM halos from those systems are also expected to be rotating. Galaxy halos acquire
angular momentum in their formation via tidal torques coming from the neighbouring large-scale structures
(Peebles 1969). This angular momentum is conserved after those halos virialize, which leads to the rotating
supported disks in galaxies. This process is still being fully understood, with N-body and hydro-simulations
showing that the halos of galaxies are expected to have angular momentum. From CDM N-body simulations,
the angular momentum obtained, represented by the dimensionless parameter λ = L|E|1/2/GM5/2 where L
is the angular momentum and E the total energy, are on the range λ ∈ [0.01, 0.1] (Barnes and Efstathiou
1987). Therefore, when considering realistic halos of DM, one needs to consider rotation, and if DM is made of
ultra-light particles, this can lead to the formation of vortices.

Here we show the effects of the halos being rotating in the ULDM, an effect that is not as explored in the
literature as expected, but that might present a decisive observational signature for these ULDM models. We saw
in Sect. 3 above there are conditions for the formation of these vortices, depending on the angular momentum
of the rotating halo. The presence of vortices in the DM halo can alter some properties of the halo, like the mass
distribution or the presence of those substructures in parts of the halo that might lead to observable signatures.
Detectability of these vortices or of the effects caused by their presence, and the observational technique used to
probe them, will depend on their abundance and size, which should be studied solving the Schrödinger–Poisson
system. Those present some theoretical solutions and estimates of the properties and formation of these vortices,
but mainly vortices have to be studied numerically, with wave simulations like described above. We present here
some of those that investigate this in the SIFDM model, and a rough estimation for the DM superfluid.

During the final preparation of this review a paper studying the possibility of the formation of vortices in
gravitationally bounded BECs appeared (Hui et al. 2020). In this paper they study the possibility of formation
of a vortices in the FDM model and of other topological defects with different topologies. They also present
results of simulations of this system for rotating halos and the possible observational signatures as consequence
of the existence of such vortices.

Other topological defects like the creation of strings on the condensate in the DM halo in the SIFDM is
investigated in Harko and Lake (2015).

51 It is also worth noticing that a fluid can also form classical vortices, and the difference between those to the quantum vortices
is that the quantum vortices are quantized.
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Self-Interacting BEC

There is a small amount of studies in the literature that investigate the presence of vortices (Rindler-Daller
and Shapiro 2012; Zinner 2011; Kain and Ling 2010) (and recently Hui et al. 2020). Given that to investigate
vortices one needs to study the Schrödinger–Poisson equations, the main model where those were studied is the
simplest superfluid model given by the SIFDM model. But even in these simplified models it is still hard to find
solutions to the GP equation.

The study in Kain and Ling (2010) discusses the possibility of the formation of a lattice of vortices in the
halo of a galaxy with the same parameters as Andromeda. This aims to show a order of magnitude estimate
for a known galaxy, the amount of vortices formed and put bounds in the mass of the SIFDM particle, and
in its interaction. Assuming that a galaxy like M31 has M ∼ 1012M�, average radius R ∼ 100 kpc, average
density ρavg ∼ 10−23 kg/m

3
and angular velocity Ω ∼ 10−16 rad/s. If vortices are created they cannot be larger

than the size of the condensate core, Rv ≤ Rbec, the SIFDM must have a mass m & 10−24 eV, with radius
Rv ∼ 1021 m ≈ 30 kpc. Therefore, in a halo like the halo of M31, there might be from 1 to 100 vortices. For
the simplified case of having only one vortex in the halo, the GP equation can be solved in the Thomas–Fermi
limit, ignoring the QP term, determining the structure of this cylindrical vortex core, and the critical velocity,
showing that Andromeda galaxy could have formed a vortex given its angular velocity.

The reference Zinner (2011), focus in a simplified study of the consequences for virialization and on the
rotation curves if a lattice of vortices is present in the FDM model. Depending on the choice of mass and
interaction, this vortices can lead to oscillations in the rotation curve of galaxies, which the authors claim
resemble what is observed in rotation curve of spiral galaxies.

Now, in Rindler-Daller and Shapiro (2012), the authors try to study the vortex solutions in more detail,
solving the GP for some assumed halo profiles that are more realistic than in the previous work (see also Suárez
et al. 2014 for a review of vortices in SIFDM).

First, it is interesting to repeat something we presented in Sect. 3.5. The presence of a rotation in a condensate
in a spherical halo is that without rotation, the BEC wavefunction is real and positive, however the angular
velocity induces a superfluid current, making the wavefunction to be complex, ψ = |φ|eiS(t,r), with a phase that
gives a velocity flow, v = ~∇S/m, and as we saw in Sect. 3.5, the fluid velocity is v′ = v−Ω× v. Therefore, a
rotating BEC is a superfluid. As shown in Table 1 from Rindler-Daller and Shapiro (2012), FDM models, where
there is no interactions, do not form vortices. If the interaction is attractive, vortices are also not formed. For
this reason we work in the case of SIFDM model with repulsive interaction.

The condition for the formation of vortices is Ω > Ωc or equivalently L > Lqm. This imposes a bound
in the mass of the SIFDM particles. They work this out and the solutions for the GP equations for two halo
models. First, in halo model A, they assume a simplified halo model where the density and potential is given
by a homogeneous Maclaurin spheroid, which gives a known form for the gravitational potential inside halos.
This halo is not irrotational, having L � Lqm. With that simplified gravitational potential one can calculate
the characteristics of a virialized rotating halo. This allows to put bounds in the mass and the interaction of the
SIFDM particle, assuming the critical case where (L/Lqm)c and λ = 0.05 is the average of the dimensionless
rotation parameter: m/mH ≥ (m/mH)c ≈ 50 and g/gH ≥ (g/gH)c ≈ 2550.

For a more realistic halo which allows to take into account the compressibility of the fluid, the halo is
considered as (n = 1)-polytropic Riemann-S ellipsoids, halo model B, which is irrotational before forming halos
L = Lqm. This shows that if L < Lqm, there is no formation of vortices and the rotating BEC can be described
by halo model B. And for L� Lqm, there is the formation of, at least one vortex if the quantities are equal to
the critical quantities or more in case they exceed these values, with the halo being described by halo model A.
The case where L & Lqm, the halo is described by the halo model B again, with a single vortex in the center of
the halo.

This study shows the conditions for the formation of the vortices and shows the complexity that can arise
in the presence of rotations and of a vortex lattice.

These studies show important characteristics for the formation of vortices in the halo of galaxies in the
SIFDM model. However, to fully study the presence and consequences of a rotating halo in those model one
needs to perform wave simulations. One study that takes that in consideration is Hui et al. (2020).

DM superfluid

As we saw above, to calculate the abundance and properties of the vortices, it is necessary to solve the
equations of motion of the superfluid coupled to the Poisson equation. For the DM superfluid model, there is
still no numerical study of the solution of the equations equivalent to the GP in the presence of gravity in order
to understand the formation of vortices in this model. For this reason, here we present a dimensional analysis
and order of magnitude estimation of the presence of vortices in the DM superlfuid context.
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Vortices are formed when the angular velocity of the superfluid is larger than the critical velocity: ΩSf � Ωc,
with the critical angular velocity given by (80). For R ∼ 100 kpc and m ∼ eV, we can see that Ωc ∼ 10−41 s−1

(neglecting the logarithmic factor). This is much smaller than the rotation velocity of the halo: Ω ∼ λ
√
Gρ ∼

10−18s−1, using a halo mass density ρ ∼ 10−25g/cm
3
. So, there will be the production of vortices in the halos

of the galaxies in the DM superfluid model And this production seem to be very numerous.
We can estimate the number of vortices in the halo Nv = Ω/Ωc ∼ 1023, with a core radius, given by the

healing length, ξ = 1/(mcs) ∼ mm (assumed a MW type galaxy and fiducial values). Although highly numbered,
these vortices are small. It is still unclear if it is possible to detect those vortices via, for example, gravitational
lensing or any other effect they might have in the galaxy.

5.5.2 Interference fringes

Another interesting effect that comes from the wave nature of DM superfluid model is interference. Since the
condensate is described by a coherent wave function with the density if give by |ψ|2, in the formation of galaxies,
interference patterns are expected to form.

As we discussed in the numerical simulations section, the interference patterns can only be seen in wave
simulations, since when there is destructive interference, the quantum pressure term is not well defined and this
is not present in the fluid simulations. We show in Fig. 21, the result of two wave simulations from different
groups that show the interference fringes that appear in the filaments of FDM structure. These patterns appear
on scales of order of the de Broglie wavelength. General features like caustics, which are density singularities
that usually appear in CDM and even WDM simulations, are regularized in FDM models due to the uncertainty
principle, and do not appear in FDM simulations.

Fig. 21 In this figure we show the interference pattern in the DM halos from hydrodynamical simulations of the fuzzy DM model.
Left panel: Figure from Schive et al. (2014a) showing the density distribution of FDM at redshift z = 0.1 at different scales. This
simulation uses the GAMER code to describe the wave-like FDM using an adaptive-mesh-refinement (AMR) scheme. Right panel:
Figure from Mocz et al. (2019) that shows the simulations of the slices of DM through a filament in the DM distribution at redshift
z = 5.5. This simulation was made by modifying the magneto-hydrodynamics code AREPO for FDM model. These figures clearly
show the interference pattern that the FDM model imprints in the halos which is very distinct from CDM or even other DM
models like WDM. These interference fringes that are present at the scales of the de Broglie wavelength. On top of that, in both
stimulations we can see the soliton cores formed in the halos, also characteristic of the FDM model.

Another effect that could generate interference patterns is the collision of subsonic galaxies. Since those
galaxies maintain the coherence of their condensate core described by the coherent wave function, the collision
between these cores leaves an interference pattern (Maleki et al. 2020). If this interference fringes could be
observed, this would be still another form of probing these models.

Interference patterns are going to be created also in the merging processes of dark/bright solitons (Hamner
et al. 2011; González and Guzmán 2011). Some authors suggest that this effect could be linked to the shells
seen around elliptical galaxies (Cooper et al. 2011).

6 Summary

In this review we studied an alternative class of DM model, the ultra-light DM. These models have been receiving
a lot of attention in the literature nowadays given their interesting property of forming a BEC or superfluid on
galactic scales. In this review we aimed to give a summary of the models of ULDM, suggesting for the first time
a classification into three categories according to the their non-relativistic behaviour and the structures they
form in galaxies: the fuzzy DM, self-interacting BEC and the DM superfluid. Their different descriptions lead to
different phenomenologies and observational effects that can be used to test these DM paradigms. We had also
the goal to give a snapshot of the field as it stands at present. We saw that current observations highly constrain
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the mass of the FDM and, if these constrains hold, the mass range which shows an interesting phenomenology
on small scales and reconciles these scales with the CDM successes on large scales, is challenged for this model.

We highlight how important the observations on small scales are for helping to determine the nature of DM,
and how the observations of the small scales, galaxies and our MW have been advancing very fast in the last
few years. With current and new experiments like Gaia, LSST, PFS, HERA, SKA, just to cite a few, and the
new and exciting probes like stellar streams, 21-cm cosmology, MW observables, BH superradiance, the next
few years promise to revolutionize the tests of DM on small scales.

In this review we tried also to give a complete description of the theory behind these models, describing the
striking phenomena of BEC and superfluidity. We stressed the difference between models, showing their different
descriptions and phenomenological consequences. Since the understanding of this DM class of models require
knowledge from several fields, including condensed matter physics, we believe that this theoretical summary of
these constructions, is very important to better understand of all the features that these models of DM can
present and even help in finding new observables for these models. It is also important for future progress, since
there is still a lot of room for theoretical development of these DM models.

Maybe one of the biggest challenge for these models and testing them against observations is the need for
numerical simulations. Those are necessary so we can understand how the formation of structures proceeds in
these models. However, performing those simulations in a way that they resolve the small scales in order for
us to see the interesting effects coming from the wave nature of these models, and also that they simulate the
structure on cosmological scales is a challenge. Incredible advances in this field have been made in the past few
years and there are many groups currently working to improve those simulations. Most of those advance, tough,
are only for the FDM model. Simulations for the SIBEC are only a few and there is still no numerical framework
to study the DM superfluid. Thus we should expect continue progress in this field in the future, which will lead
to also a better understanding on how to probe those models with observations.

In summary, the study of the ultra-light DM is an active area of research and many challenges are still
opened to be addressed theoretically, numerically and observationally. As this field becomes more and more
popular we believe this progress will go even faster and we hope this review can help those entering or already
in this field supporting their understanding of this fascinating new DM model.
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Bornheimer U, Vasić I, Hofstetter W (2017) Phase transitions of the coherently coupled two-component Bose gas in a square optical
lattice. Phys Rev A 96(6):063623, DOI 10.1103/PhysRevA.96.063623, 1705.02833

Borriello A, Salucci P (2001) The dark matter distribution in disk galaxies. Mon Not R Astron Soc 323:285, DOI 10.1046/j.
1365-8711.2001.04077.x, astro-ph/0001082

Borzyszkowski M, Porciani C, Romano-Diaz E, Garaldi E (2017) ZOMG – I. How the cosmic web inhibits halo growth and generates
assembly bias. Mon Not R Astron Soc 469(1):594–611, DOI 10.1093/mnras/stx873, 1610.04231

Bose SN (1924) Planck’s law and light quantum hypothesis. Z Phys 26:178–181, DOI 10.1007/BF01327326
Bouwens R, et al. (2015) UV Luminosity Functions at redshifts z ∼4 to z ∼10: 10000 Galaxies from HST Legacy Fields. Astrophys

J 803(1):34, DOI 10.1088/0004-637X/803/1/34, 1403.4295
Bovill MS, Ricotti M (2009) Pre-reionization Fossils, Ultra-faint Dwarfs and the Missing Galactic Satellite Problem. Astrophys J

693:1859–1870, DOI 10.1088/0004-637X/693/2/1859, 0806.2340
Bovy J, Erkal D, Sanders JL (2017) Linear perturbation theory for tidal streams and the small-scale CDM power spectrum. Mon

Not R Astron Soc 466(1):628–668, DOI 10.1093/mnras/stw3067, 1606.03470
Bowman JD, Rogers AEE, Monsalve RA, Mozdzen TJ, Mahesh N (2018) An absorption profile centred at 78 megahertz in the

sky-averaged spectrum. Nature 555(7694):67–70, DOI 10.1038/nature25792, 1810.05912
Boylan-Kolchin M, Bullock JS, Kaplinghat M (2011) Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon

Not R Astron Soc 415:L40, DOI 10.1111/j.1745-3933.2011.01074.x, 1103.0007
Boylan-Kolchin M, Bullock JS, Kaplinghat M (2012) The Milky Way’s bright satellites as an apparent failure of LCDM. Mon Not

R Astron Soc 422:1203–1218, DOI 10.1111/j.1365-2966.2012.20695.x, 1111.2048
Bozek B, Marsh DJE, Silk J, Wyse RFG (2015) Galaxy UV-luminosity function and reionization constraints on axion dark matter.

450(1):209–222, DOI 10.1093/mnras/stv624, 1409.3544
Braaten E, Mohapatra A, Zhang H (2016) Dense Axion Stars. Phys Rev Lett 117(12):121801, DOI 10.1103/PhysRevLett.117.121801,

1512.00108

Brehmer J, Mishra-Sharma S, Hermans J, Louppe G, Cranmer K (2019) Mining for Dark Matter Substructure: Inferring subhalo
population properties from strong lenses with machine learning. Astrophys J DOI 10.3847/1538-4357/ab4c41, 1909.02005

Brito R, Cardoso V, Pani P (2015a) Black holes as particle detectors: evolution of superradiant instabilities. Class Quantum Grav
32(13):134001, DOI 10.1088/0264-9381/32/13/134001, 1411.0686

Brito R, Cardoso V, Pani P (2015b) Superradiance: Energy Extraction, Black-Hole Bombs and Implications for Astrophysics and
Particle Physics, vol 906. Springer, Cham, DOI 10.1007/978-3-319-19000-6, 1501.06570

Brito R, Ghosh S, Barausse E, Berti E, Cardoso V, Dvorkin I, Klein A, Pani P (2017) Gravitational wave searches for ultralight
bosons with LIGO and LISA. Phys Rev D 96(6):064050, DOI 10.1103/PhysRevD.96.064050, 1706.06311

Brito R, Grillo S, Pani P (2020) Black hole superradiant instability from ultralight spin-2 fields. arXiv e-prints 2002.04055

Broeils A (1992) Dark and visible matter in spiral galaxies. PhD thesis, University of Groningen
Bryan GL, Norman ML (1998) Statistical properties of X-ray clusters: Analytic and numerical comparisons. Astrophys J 495:80,

DOI 10.1086/305262, astro-ph/9710107
Bullock JS, Boylan-Kolchin M (2017) Small-Scale Challenges to the ΛCDM Paradigm. Annu Rev Astron Astrophys 55:343–387,

DOI 10.1146/annurev-astro-091916-055313, 1707.04256
Bullock JS, Kravtsov AV, Weinberg DH (2000) Reionization and the abundance of galactic satellites. Astrophys J 539:517, DOI

10.1086/309279, astro-ph/0002214
Burgess C (2000) Goldstone and pseudoGoldstone bosons in nuclear, particle and condensed matter physics. Phys Rept 330:193–261,

DOI 10.1016/S0370-1573(99)00111-8, hep-th/9808176
Cai RG, Liu TB, Wang SJ (2018) Gravitational wave as probe of superfluid dark matter. Phys Rev D 97(2):023027, DOI 10.1103/

PhysRevD.97.023027, 1710.02425
Calabrese E, Spergel DN (2016) Ultra-Light Dark Matter in Ultra-Faint Dwarf Galaxies. Mon Not Roy Astron Soc 460(4):4397–4402,

DOI 10.1093/mnras/stw1256, 1603.07321
Cappellaro A, Macrı T, Bertacco GF, Salasnich L (2017) Equation of state and self-bound droplet in Rabi-coupled Bose mixtures.

Sci Rep 7:13358, DOI 10.1038/s41598-017-13647-y, 1705.01814
Carlberg RG (2012) Dark Matter Sub-Halo Counts via Star Stream Crossings. Astrophys J 748:20, DOI 10.1088/0004-637X/748/

1/20, 1109.6022
Carlberg RG (2016) Modeling GD-1 Gaps in a Milky Way Potential. Astrophys J 820(1):45, DOI 10.3847/0004-637X/820/1/45,

1512.01620

Carr B, Kuhnel F (2020) Primordial Black Holes as Dark Matter: Recent Developments DOI 10.1146/annurev-nucl-050520-125911,
2006.02838

Carr B, Kohri K, Sendouda Y, Yokoyama J (2020) Constraints on Primordial Black Holes 2002.12778

Carroll SM (1999) TASI lectures: Cosmology for string theorists. In: Theoretical Advanced Study Institute in Elementary Particle
Physics (TASI 99): Strings, Branes, and Gravity, pp 437–492, DOI 10.1142/9789812799630 0004, hep-th/0011110

Chambers KC, et al. (2016) The Pan-STARRS1 Surveys. arXiv e-prints 1612.05560

Chan JHH, Schive HY, Woo TP, Chiueh T (2018) How do stars affect ψDM haloes? Mon Not R Astron Soc 478(2):2686–2699,
DOI 10.1093/mnras/sty900, 1712.01947

Chandrasekhar S (1967) An introduction to the study of stellar structure. Dover, New York
Chapman S, Hoyos C, Oz Y (2014) Lifshitz Superfluid Hydrodynamics. JHEP 07:027, DOI 10.1007/JHEP07(2014)027, 1402.2981
Chavanis P, Delfini L (2011) Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range inter-

actions: II. Numerical results. Phys Rev D 84:043532, DOI 10.1103/PhysRevD.84.043532, 1103.2054
Chavanis PH (2011) Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: I.

Analytical results. Phys Rev D 84:043531, DOI 10.1103/PhysRevD.84.043531, 1103.2050
Chavanis PH (2012) Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter. Astron Astro-

phys 537:A127, DOI 10.1051/0004-6361/201116905, 1103.2698

0705.4158
1710.06168
1705.02833
astro-ph/0001082
1610.04231
1403.4295
0806.2340
1606.03470
1810.05912
1103.0007
1111.2048
1409.3544
1512.00108
1909.02005
1411.0686
1501.06570
1706.06311
2002.04055
astro-ph/9710107
1707.04256
astro-ph/0002214
hep-th/9808176
1710.02425
1603.07321
1705.01814
1109.6022
1512.01620
2006.02838
2002.12778
hep-th/0011110
1612.05560
1712.01947
1402.2981
1103.2054
1103.2050
1103.2698


104 Elisa G. M. Ferreira

Chavanis PH (2016) Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Phys Rev D
94(8):083007, DOI 10.1103/PhysRevD.94.083007, 1604.05904

Chavanis PH (2018) Phase transitions between dilute and dense axion stars. Phys Rev D 98(2):023009, DOI 10.1103/PhysRevD.
98.023009, 1710.06268

Chen SR, Schive HY, Chiueh T (2017) Jeans Analysis for Dwarf Spheroidal Galaxies in Wave Dark Matter. Mon Not R Astron
Soc 468(2):1338–1348, DOI 10.1093/mnras/stx449, 1606.09030

Choi JR (2006) Interference in Phase Space of Squeezed States for the Time-Dependent Hamiltonian System. International Journal
of Theoretical Physics 45(1):176–196, DOI 10.1007/s10773-005-9016-9

Church BV, Mocz P, Ostriker JP (2019) Heating of Milky Way disc stars by dark matter fluctuations in cold dark matter and fuzzy
dark matter paradigms. 485(2):2861–2876, DOI 10.1093/mnras/stz534, 1809.04744

Clowe D, Markevitch M, Bradac M, Gonzalez AH, Chung SM, Massey R, Zaritsky D (2012) On Dark Peaks and Missing Mass: A
Weak Lensing Mass Reconstruction of the Merging Cluster System Abell 520. Astrophys J 758:128, DOI 10.1088/0004-637X/
758/2/128, 1209.2143

Colin P, Avila-Reese V, Valenzuela O (2000) Substructure and halo density profiles in a warm dark matter cosmology. Astrophys
J 542:622–630, DOI 10.1086/317057, astro-ph/0004115

Collaboration G (2016) The Gaia mission. 595:A1, DOI 10.1051/0004-6361/201629272, 1609.04153
Connaughton C, Josserand C, Picozzi A, Pomeau Y, Rica S (2005) Condensation of Classical Nonlinear Waves. 95(26):263901,

DOI 10.1103/PhysRevLett.95.263901, cond-mat/0502499
Conroy C, Wechsler RH, Kravtsov AV (2006) Modeling luminosity-dependent galaxy clustering through cosmic time. Astrophys J

647:201–214, DOI 10.1086/503602, astro-ph/0512234
Conti C (2012) Condensation dynamics: An enlightened daemon. Nature Physics 8(6):445–446, DOI 10.1038/nphys2336
Cooper AP, Mart́ınez-Delgado D, Helly J, Frenk C, Cole S, Crawford K, Zibetti S, Carballo-Bello JA, Gabany R (2011) The

formation of shell galaxies similar to NGC 7600 in the cold dark matter cosmogony. Astrophys J Lett 743:L21, DOI 10.1088/
2041-8205/743/1/L21, 1111.2864

Cooray A, Sheth RK (2002) Halo Models of Large Scale Structure. Phys Rept 372:1–129, DOI 10.1016/S0370-1573(02)00276-4,
astro-ph/0206508

Corasaniti P, Agarwal S, Marsh D, Das S (2017) Constraints on dark matter scenarios from measurements of the galaxy luminosity
function at high redshifts. Phys Rev D 95(8):083512, DOI 10.1103/PhysRevD.95.083512, 1611.05892
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Oñorbe J, Boylan-Kolchin M, Bullock JS, Hopkins PF, Kerěs Ds, Faucher-Giguère CA, Quataert E, Murray N (2015) Forged in
FIRE: cusps, cores, and baryons in low-mass dwarf galaxies. Mon Not R Astron Soc 454(2):2092–2106, DOI 10.1093/mnras/
stv2072, 1502.02036

Ostriker EC (1999) Dynamical friction in a gaseous medium. Astrophys J 513:252, DOI 10.1086/306858, astro-ph/9810324
Ostriker JP, Choi E, Chow A, Guha K (2019) Mind the Gap: Is the Too Big to Fail Problem Resolved? Astrophys J 885(1):97,

DOI 10.3847/1538-4357/ab3288, 1904.10471
Papastergis E, Giovanelli R, Haynes MP, Shankar F (2015) Is there a “too big to fail” problem in the field? Astron Astrophys

574:A113, DOI 10.1051/0004-6361/201424909, 1407.4665
Peccei RD, Quinn HR (1977) CP conservation in the presence of pseudoparticles. Phys Rev Lett 38:1440–1443, DOI 10.1103/

PhysRevLett.38.1440, URL https://link.aps.org/doi/10.1103/PhysRevLett.38.1440

Peebles PJE (1969) Origin of the Angular Momentum of Galaxies. Astrophys J 155:393, DOI 10.1086/149876
Peebles PJE (1993) Principles of Physical Cosmology
Peebles PJE (2000) Fluid dark matter. Astrophys J Lett 534:L127, DOI 10.1086/312677, astro-ph/0002495
Penarrubia J, Navarro JF, McConnachie AW (2008) The Tidal Evolution of Local Group Dwarf Spheroidals. Astrophys J 673:226,

DOI 10.1086/523686, 0708.3087
Penrose O, Onsager L (1956) Bose-Einstein Condensation and Liquid Helium. Phys Rev 104:576–584, DOI 10.1103/PhysRev.104.576
Pitaevskii L, Stringari S (2016) Bose-Einstein condensation and superfluidity. International series of monographs on physics, Oxford

University Press, Oxford, DOI 10.1093/acprof:oso/9780198758884.001.0001, URL https://cds.cern.ch/record/2143198

Powell AJ (2016) The cosmology and astrophysics of axion-like particles. PhD thesis, Oxford U.
Preskill J, Wise MB, Wilczek F (1983) Cosmology of the Invisible Axion. Phys Lett B 120:127–132, DOI 10.1016/0370-2693(83)

90637-8
Randall SW, Markevitch M, Clowe D, Gonzalez AH, Bradac M (2008) Constraints on the Self-Interaction Cross-Section of Dark

Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56. Astrophys J 679:1173–1180, DOI 10.1086/
587859, 0704.0261

Rindler-Daller T, Shapiro PR (2012) Angular Momentum and Vortex Formation in Bose-Einstein-Condensed Cold Dark Matter
Haloes. Mon Not R Astron Soc 422:135–161, DOI 10.1111/j.1365-2966.2012.20588.x, 1106.1256

Ringwald A (2014) Axions and Axion-Like Particles. In: 49th Rencontres de Moriond on Electroweak Interactions and Unified
Theories, pp 223–230, 1407.0546

Rogel-Salazar J, Choi S, New GHC, Burnett K (2004) Methods of quantum field theory for trapped Bose-Einstein condensates. J
Optics B 6(9):R33–R59, DOI 10.1088/1464-4266/6/9/R01

Rogers KK, Peiris HV (2020) Strong bound on canonical ultra-light axion dark matter from the Lyman-alpha forest 2007.12705

Romano-Diaz E, Garaldi E, Borzyszkowski M, Porciani C (2017) ZOMG – II. Does the halo assembly history influence central
galaxies and gas accretion? Mon Not R Astron Soc 469(2):1809–1823, DOI 10.1093/mnras/stx878, 1701.02743

astro-ph/0604576
0712.0860
1811.02025
astro-ph/9611107
astro-ph/0311231
1612.06329
cond-mat/0406033
https://doi.org/10.1007/978-3-642-15942-8_1
nlin/0507051
https://doi.org/10.1007/978-3-642-15942-8_6
1812.09760
1904.01604
cond-mat/0409335
1108.2513
1912.07064
astro-ph/0701731
1801.08144
1809.09619
1011.0899
1502.01281
1504.01437
1502.02036
astro-ph/9810324
1904.10471
1407.4665
https://link.aps.org/doi/10.1103/PhysRevLett.38.1440
astro-ph/0002495
0708.3087
https://cds.cern.ch/record/2143198
0704.0261
1106.1256
1407.0546
2007.12705
1701.02743


Ultra-light dark matter 111

Roszkowski L, Sessolo EM, Trojanowski S (2018) WIMP dark matter candidates and searches—current status and future prospects.
Rept Prog Phys 81(6):066201, DOI 10.1088/1361-6633/aab913, 1707.06277

Rubin VC, Ford J W K (1970) Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys J
159:379–403, DOI 10.1086/150317

RUFFINI R, BONAZZOLA S (1969) Systems of self-gravitating particles in general relativity and the concept of an equation of
state. Phys Rev 187:1767–1783, DOI 10.1103/PhysRev.187.1767, URL https://link.aps.org/doi/10.1103/PhysRev.187.1767

Ruffini R, Bonazzola S (1969) Systems of selfgravitating particles in general relativity and the concept of an equation of state. Phys
Rev 187:1767–1783, DOI 10.1103/PhysRev.187.1767

Safarzadeh M, Spergel DN (2019) Ultra-light Dark Matter is Incompatible with the Milky Way’s Dwarf Satellites. Astrophys J
DOI 10.3847/1538-4357/ab7db2, 1906.11848

Safarzadeh M, Scannapieco E, Babul A (2018) A limit on the warm dark matter particle mass from the redshifted 21 cm absorption
line. Astrophys J Lett 859(2):L18, DOI 10.3847/2041-8213/aac5e0, 1803.08039

Sanders RH, McGaugh SS (2002) Modified Newtonian dynamics as an alternative to dark matter. Ann Rev Astron Astrophys
40:263–317, DOI 10.1146/annurev.astro.40.060401.093923, astro-ph/0204521

Sawala T, et al. (2016) The APOSTLE simulations: solutions to the Local Group’s cosmic puzzles. Mon Not R Astron Soc
457(2):1931–1943, DOI 10.1093/mnras/stw145, 1511.01098

Schay G (1924) Zur Quantentheorie der einatomigen idealen Gase. Zeitschrift fur Physik 25(1):37–41, DOI 10.1007/BF01327507
Schaye J, et al. (2015) The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon Not

R Astron Soc 446:521–554, DOI 10.1093/mnras/stu2058, 1407.7040
Schive HY, Chiueh T, Broadhurst T (2014a) Cosmic Structure as the Quantum Interference of a Coherent Dark Wave. Nature

Phys 10:496–499, DOI 10.1038/nphys2996, 1406.6586
Schive HY, Liao MH, Woo TP, Wong SK, Chiueh T, Broadhurst T, Hwang WYP (2014b) Understanding the Core-Halo Relation

of Quantum Wave Dark Matter from 3D Simulations. Phys Rev Lett 113(26):261302, DOI 10.1103/PhysRevLett.113.261302,
1407.7762

Schive HY, Chiueh T, Broadhurst T, Huang KW (2016) Contrasting Galaxy Formation from Quantum Wave Dark Matter, ψDM,
with ΛCDM, using Planck and Hubble Data. Astrophys J 818(1):89, DOI 10.3847/0004-637X/818/1/89, 1508.04621

Schive HY, Chiueh T, Broadhurst T (2019) Soliton Random Walk and the Cluster-Stripping Problem in Ultralight Dark Matter.
Phys Rev Lett 1912.09483

Schmitt A (2015) Introduction to Superfluidity: Field-theoretical approach and applications, Lecture Notes in Physics, vol 888.
Springer, Cham, DOI 10.1007/978-3-319-07947-9, 1404.1284

Schneider A (2015) Structure formation with suppressed small-scale perturbations. 451(3):3117–3130, DOI 10.1093/mnras/stv1169,
1412.2133

Schneider A (2018) Constraining noncold dark matter models with the global 21-cm signal. Phys Rev D 98(6):063021, DOI
10.1103/PhysRevD.98.063021, 1805.00021

Schneider MD, Frenk CS, Cole S (2012) The shapes and alignments of dark matter halos. 2012(5):030, DOI 10.1088/1475-7516/
2012/05/030, 1111.5616

Schneider P (2015) Extragalactic Astronomy and Cosmology: An Introduction, 2nd edn. Springer, Heidelberg, DOI 10.1007/
978-3-642-54083-7

Schutz K (2020) The Subhalo Mass Function and Ultralight Bosonic Dark Matter. arXiv e-prints 2001.05503

Schwabe B, Niemeyer JC, Engels JF (2016) Simulations of solitonic core mergers in ultralight axion dark matter cosmologies. Phys
Rev D 94(4):043513, DOI 10.1103/PhysRevD.94.043513, 1606.05151

Schwabe B, Gosenca M, Behrens C, Niemeyer JC, Easther R (2020) AxioNyx: Simulating Mixed Fuzzy and Cold Dark Matter
2007.08256

Seidel E, Suen WM (1990) Dynamical Evolution of Boson Stars. 1. Perturbing the Ground State. Phys Rev D 42:384–403, DOI
10.1103/PhysRevD.42.384

Semikoz D, Tkachev I (1997) Condensation of bosons in kinetic regime. Phys Rev D 55:489–502, DOI 10.1103/PhysRevD.55.489,
hep-ph/9507306

Sharma A, Khoury J, Lubensky T (2019) The Equation of State of Dark Matter Superfluids. JCAP 05:054, DOI 10.1088/1475-7516/
2019/05/054, 1809.08286

Sheth RK, Tormen G (1999) Large-scale bias and the peak background split. 308(1):119–126, DOI 10.1046/j.1365-8711.1999.02692.x,
astro-ph/9901122

Shimabukuro H, Ichiki K, Kadota K (2020) Constraining the nature of ultra light dark matter particles with the 21 cm forest. Phys
Rev D 101(4):043516, DOI 10.1103/PhysRevD.101.043516, 1910.06011

Sikivie P (2008) Axion Cosmology. Lect Notes Phys 741:19–50, DOI 10.1007/978-3-540-73518-2 2, astro-ph/0610440
Sikivie P (2020) Invisible Axion Search Methods 2003.02206

Sikivie P, Yang Q (2009) Bose-Einstein Condensation of Dark Matter Axions. Phys Rev Lett 103:111301, DOI 10.1103/PhysRevLett.
103.111301, 0901.1106

Silverman MP, Mallett RL (2002) Dark matter as a cosmic Bose-Einstein condensate and possible superfluid. Gen Rel Grav
34:633–649, DOI 10.1023/A:1015934027224

Simon JD, Bolatto AD, Leroy A, Blitz L, Gates EL (2005) High-resolution measurements of the halos of four dark matter-dominated
galaxies: Deviations from a universal density profile. Astrophys J 621:757–776, DOI 10.1086/427684, astro-ph/0412035

Sin SJ (1994) Late time cosmological phase transition and galactic halo as Bose liquid. Phys Rev D 50:3650–3654, DOI 10.1103/
PhysRevD.50.3650, hep-ph/9205208

Skordis C (2009) TOPICAL REVIEW: The tensor-vector-scalar theory and its cosmology. Classical and Quantum Gravity
26(14):143001, DOI 10.1088/0264-9381/26/14/143001, 0903.3602

Skordis C, Mota D, Ferreira P, Boehm C (2006) Large Scale Structure in Bekenstein’s theory of relativistic Modified Newtonian
Dynamics. Phys Rev Lett 96:011301, DOI 10.1103/PhysRevLett.96.011301, astro-ph/0505519

Slepian Z, Goodman J (2012) Ruling Out Bosonic Repulsive Dark Matter in Thermal Equilibrium. Mon Not R Astron Soc 427:839,
DOI 10.1111/j.1365-2966.2012.21901.x, 1109.3844

Son DT (2002) Low-energy quantum effective action for relativistic superfluids. arXiv e-prints hep-ph/0204199

Son DT, Wingate M (2006) General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas.
Annals Phys 321:197–224, DOI 10.1016/j.aop.2005.11.001, cond-mat/0509786

Spergel DN, Steinhardt PJ (2000) Observational evidence for selfinteracting cold dark matter. Phys Rev Lett 84:3760–3763, DOI
10.1103/PhysRevLett.84.3760, astro-ph/9909386
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